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Introduction

“In the twenty-first 
century, the robot will 
take the place which slave 
labour occupied in ancient 
civilization.”

― Nikola Tesla
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Introduction

Computers are increasingly changing industry. Whereas in the past this has
created opportunities for improved logistics and overview like SCADA (Super-
visory Control and Data Acquisition) it is now starting to change the indus-
try itself (Telgen et al., 2013c). Computers are not only supporting existing
mechatronical systems, but are fundamentally changing the processes in how
they are used. This is the basis for many changes in industry and specifically
the field of manufacturing. These technological changes and paradigms are
known under a variety of names, including ’Smart Industry’, ’Agile Manu-
facturing’, ’Industry 4.0’, and Cyber-Physical systems. Especially the ideas
behind Cyber-Physical Systems and Agile Manufacturing were some of the
original drivers behind this research. Whereas mechatronics was the integra-
tion of electronics, mechanical systems and computers into embedded devices,
Cyber-Physical Systems can be seen as the next step: The integration of the
internet and the virtual ’Cyber’ world. With Cyber-Physical Systems, mecha-
tronical devices become connected through the Internet of Things and use
their virtual ’modelled’ representation of the world to sense and act in the
physical domain.

The opportunities that arise through new technologies like Cyber-Physical
Systems give a new perspective on the principles and opportunities in view of
Agile Manufacturing (AM). AM is designed to quickly respond to customer
and market changes, while still controlling cost and quality (Gunasekaran,
1999).

The change to Cyber-Physical Systems comes with the use of more com-
puting power. As in other areas, the increase in computing power also makes
it easier in the manufacturing industry to integrate ’intelligent’ behaviour.
Dynamic (intelligent) behaviour can be made possible with the use of mi-
crosystems, i.e. sensors and actuators, together with advanced software to
interpret the sensed data and act accordingly. In such a way a robotic sys-
tem is created that can dynamically interact with its environment. However,
the dynamic behaviour of such a system can also increase complexity (Tel-
gen et al., 2012). Therefore, it is important to create a balanced architecture
that, on the one hand, has a high performance to control the hardware, i.e.
dynamically interpret and interact with its environment in real-time, and on
the other hand, is not so complex that it will be difficult to use and shows
unexpected, i.e. unsafe or unwanted, behaviour.

From a hardware perspective there are also a number of state-of-the-art
developments. Systems become more dependent on multi-disciplinary fields;
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integration of ICT, computer engineering, electronics and mechanical devel-
opments come at a cost and increase complexity. Since these costs have to be
earned back, it is necessary to reuse systems as often as possible. Over the
years the move to multi-disciplinary integration has already led to the cre-
ation of system engineering methods that focus on modular and autonomous
systems. The modules can be used as building blocks that can be combined
for a specific purpose. If these modular systems are standardised and well-
documented, they can also be easily reconfigured to provide a range of options.
If a well-defined module could be seen as an autonomous black box, it also
lowers complexity of the overall system, where functionality can be abstracted
on a higher level (Telgen et al., 2012).

All these developments have a high focus on flexibility in many forms: flex-
ibility in manufacturing processes, in adapting the hardware and software, in
the creation of the equipment itself and even in how products can be used.
Flexibility is the key in the current developments. However, flexibility in manu-
facturing can be seen from many different perspectives. Hence, it is important
to focus the research. This PhD addresses the low-level technological means,
i.e. not at the enterprise or resource level, but the control and device level
to be able to automate the manufacturing of of products that at this time can
commonly only be produced by hand. To explain this further, please consider
the classic automation pyramid, seen in Figure 1.1. From the perspective of
the classic automation pyramid, the research will focus on the bottom three
layers, i.e.: (1) the hardware level, with devices like sensors and actuators;
(2) the module (low-level control) layer, with PCs or micro-controllers that
connect to PLCs and PIDs to control the devices; (3) the Supervised Control
and Data Acquisition Layer (SCADA) systems that connects and controls the
systems from a higher perspective. The upper two levels, like the Manufactur-
ing Execution System (MES), that for instance contains most manufacturing
floor scheduling systems, and the Enterprise Resource Planning (ERP) are
largely taken out of scope unless they are directly required or affected. For
instance, scheduling is discussed to the extent (but no further) to show that
it is required by the proof of concepts and affected by the possibilities that
have been created throughout this research. However, the work of Moergestel
(2014) does discuss scheduling and is compliant with the work performed in
this research. More details on the scope and limitations will be discussed in
the next chapter.

To be able to create flexibility at the technological level it is important to
take an applied approach, to lower the complexity and create ’mature’ tech-
nology that is transparent, i.e. understood, and can be adopted by industry.

Figure 1.1: The classic automation pyramid.

1.1 Research Motivation

This research is motivated by the need for practicable, i.e. applicable, flexible
systems that can dynamically change their purposes based on the current
demand. The research will be focused on the technical aspects, based on the
perspective of Cyber-Physical Systems, i.e. seen from the software but with a
small overlap with the mechatronical systems. To motivate these choices let’s
further investigate some of the aspects of the current changes that influence
the manufacturing industry:

Due to the advantages of using smart (or intelligent) systems for agile
manufacturing use, many companies and research groups are experimenting
and conducting Research and Development with several projects. However,
the success in industry itself has so far been limited (Leitão, 2009). This is
due to a number of reasons, including the complexity of such systems with
the high initial investment costs, the expertise needed to create such systems,
and the difficulties to create a business case for dynamic, or flexible, systems.
Schild and Bussmann show this in a case where a successful self-organised
manufacturing system was set up at Daimler-Chrysler. They state that while
the system was successfully implemented it was discontinued because a tech-
nical advantage is not always a measurable economical advantage (Schild and
Bussmann, 2007). When continuing this research in this field, therefore, it
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is important to take this aspect into account. In this research, this will be
done by considering several techniques and requirements that will lower the
complexity and hardware costs, and increasing the flexibility to even higher
levels.

Besides industry itself, there is also a change in retail products. Mass cus-
tomisation is slowly beginning to become a standard. Wind even introduces
the concept of ’customerisation’. This is a new business strategy that combines
personal marketing strategies with mass customisation. Figure 1.2 shows that
customerisation comes through a combination of standardisation, personali-
sation and mass customisation. (Wind and Rangaswamy, 2001) mention that
successful customerisation requires the integration of multiple processes, in-
cluding operations and R&D. He also states that increasing the digital content
of everything the company does is one of two critical aspects that should be
considered.

Figure 1.2: Combining personalisation and mass customisation towards a new
business strategy (Wind and Rangaswamy, 2001).

Another aspect is the wish to automate high-mix, low-volume manufactur-
ing. (Puik and Moergestel, 2010) already noted that the automated manufac-
turing of low volumes has been achieved in some fields, e.g., Printed Circuit
Boards (PCB). However, the same has not been achieved for microsystems,
which still largely rely on manual labour. Puik said: ”If existing equipment
would be gradually upgradable, in a true reconfigurable sense, investments in
equipment could be reduced significantly”.

ElMaraghy (2005) also shows the role of humans and automation in the
evolution of manufacturing systems, this is shown in Figure 1.3. The current

research is focused strongly on the reconfiguration aspect. However, while
not a purpose by itself, the Human/Machine systems interfacing focuses on a
dynamic (changing) environment that cannot always be predicted. As such
this is connected to the principle of ’flexibility’.

Figure 1.3: Role of humans and automation in the evolution of manufacturing
systems (ElMaraghy, 2005).

From this preliminary work a number of technology enablers were identified
that require some further introduction:

1.1.1 Technology Enablers

There are many technology enablers that influence the field of agile manu-
facturing. Therefore the introduction chapter shall first discuss five of these
enablers.

Internet of Things

The internet of things is an important paradigm in this field. The idea of phys-
ical (autonomous) objects that are connected provides many opportunities.
Kortuem even envisioned Smart Objects as building blocks for the internet of
things (Kortuem et al., 2010). He defined smart objects as autonomous phys-
ical/digital objects with sensing, processing, and network capabilities. The
idea of distributing intelligence between different entities could lower the com-
plexity of the overall system and reduce the complexity by isolating specific
functionalities.
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things (Kortuem et al., 2010). He defined smart objects as autonomous phys-
ical/digital objects with sensing, processing, and network capabilities. The
idea of distributing intelligence between different entities could lower the com-
plexity of the overall system and reduce the complexity by isolating specific
functionalities.
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Agent Technology

The word Agent comes from the Latin word agere, which means: to act.
Software agents, as shown in Figure 1.4 are entities that have their own in-
terpretation of their environment on which they act autonomously. Hence,
we uphold the definition of Wooldridge and Jennings: ’An agent is an en-
capsulated computer system that is situated in some environment and that is
capable of flexible, autonomous action in that environment in order to meet
its design objectives’ (Wooldridge and Jennings, 1995).

Agent

Environment

Sensing Acting

Figure 1.4: An autonomous agent in its environment.

Agents can be seen as ’objects with an attitude’, since unlike an object an
agent has control over its own behaviour. Agents can also be seen as a higher
abstraction of objects, which makes them ideally suited to deal with complex
dynamic environments.

Microsystems

Microsystems, Micro System Technology (MST) or Microelectromechanical
Systems (MEMS), i.e. sensors and actuators, are not only interesting as a
product for manufacturing. MST is one of the enablers for flexible systems.
Akhras even speaks of smart systems as devices and materials that could
mimic human muscular and nervous systems. Smart Systems would consist
of systems with sensors and actuators that would be embedded or attached
as an integral part of a system (Akhras, 1997). From this perspective MST
is not only interesting as a specific product to be manufactured in high-mix,
low-volume quantities, but also as an enabler for the flexible manufacturing
systems themselves. The use of MST could be essential to deal with a changing
environment to create manufacturing systems that are both flexible and safe.

Robotics

Robots are introduced in many forms and purposes; from being able to clean
the floor until assembling a car. The word robot was introduced in a play in

1921 and is derived from the Czech word robota, which stands for servitude or
forced labour. Robots were originally seen as autonomous machines that could
substitute a human to some extent. Hence, Robotics is an interdisciplinary
field that borders on multiple engineering principles, including mechanical,
electrical, and computer engineering. Robotics are an important enabler in
manufacturing, and are having an increasing impact on industry and society
in general.

Additive Manufacturing

Additive Manufacturing, e.g., 3D printing, is seen as another enabler for flexi-
ble or ’agile’ manufacturing. Like MST, Additive Manufacturing is an enabler
for both customer products and the manufacturing equipment itself. The abil-
ity to almost instantly print 3D objects is ideal for use in prototypes and to
adapt modules for different dimensions. Therefore Additive Manufacturing is
a strong enabler for agile manufacturing that quickly needs to adapt to new
needs.

1.2 General Research Overview

This section provides a theoretical framework related to the current research.
It discusses a number of paradigms and technologies that will form the basis,
where in the next chapter the specific problem and research description will
be discussed.

1.2.1 Manufacturing Paradigms and Literature

Many paradigms have emerged that are of influence in the manufacturing
industry, but the most influential have been the three main paradigms, shown
in Figure 1.5.

Dedicated Manufacturing Systems (DMS) are the classic way of mass-
production. In this paradigm, all manufacturing systems are developed for
a specific single-purpose goal with limited to no dynamic properties. This
creates a cost-efficient system for producing high volumes of a single product
over a longer timespan (Koren and Shpitalni, 2010). The requirements stay
the same, therefore, DMS are known to have a high performance and limited
initial costs.

Flexible Manufacturing Systems (FMS) offer dynamic behaviour, which
they use to react to changes. Usually, Flexible Manufacturing Systems offer a
single purpose where the machine has the ability to perform one action. This
ability is combined with sensors, like a vision or dynamic routing system, so
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Figure 1.5: The three main manufacturing paradigms (HU, 2005).

it can adapt certain parameters, e.g. the position of a product. This cre-
ates more flexibility at the disadvantage of complexity and cost to the initial
implementations.

Reconfigurable Manufacturing Systems (RMS) are unique in the per-
spective that the functionality of the system itself can be adapted (Mehrabi
et al., 2000). As shown in Figure 1.5, they are positioned between FMS and
DMS. However, since RMS provide a way to integrate change within a system
it is expected that they will become more flexible over time (Stecke, 2005).
ElMaraghy notes that the key characteristics of RMS include modularity, in-
tegrability, scalability, convertibility, and diagnosability (ElMaraghy, 2005).
These characteristics have to be taken into account when defining the require-
ments for a flexible manufacturing architecture.

Besides the main three main manufacturing paradigms, there are also many
other paradigms and methods of interest.

Agile Manufacturing (AM), is characterised by the integration of cus-
tomer and supplier for both product design, as well as manufacturing, mar-
keting, and support services (Gunasekaran, 1999). An agile manufacturing
environment creates processes, tools, and a knowledge base to enable the or-
ganisation to respond quickly to the customer needs and market changes whilst
still controlling costs and quality (Koh and Wang, 2010).

Manufacturing As a Service (MAAS) is a concept to deliver customis-
able and on-demand manufacturing. This is closely related to manufacturing
clouds, where factories and their IT infrastructure are interconnected to create
an infrastructure where ad-hoc products are being made (Rauschecker et al.,
2014).

Holonic Manufacturing is seen as an alternative to hierarchical manage-
ment of manufacturing systems. It focuses on modularisation and ’plug and
play’ capabilities when developing or using manufacturing systems (Mcfarlane

and Bussmann, 2000). Holonic manufacturing systems are often implemented
using Multi-Agent Systems (Giret and Botti, 2009).

Noteworthy are also a number of concepts that are related to this research:

Smart Industry and Industry 4.0 are often used as a concept that
combines industrial systems with properties like the ’internet of things’ and
other cloud-related services. The name ’Industries 4.0’ is based on the idea
that this could be the 4th industrial revolution, see Figure 1.6

Figure 1.6: Industry 4.0 - source: DKFI - German Research Center for Arti-
ficial Intelligence (2011).

These depict the vision of smart factories that consist of Cyber-Physical
Systems. As mentioned before, Cyber-Physical Systems are collaborating
computational (virtual) elements that control physical entities. In other words,
a virtual entity with its virtual world image that uses that image to control
and interpret the physical world and operate a physical counterpart in this
environment. This virtual entity is commonly an embedded system within the
system that it controls. (Lee et al., 2015) extends this idea even further by
proposing a new architecture for CPS based on 5 layers, see Figure 1.7.

The proposed layers also reflect on some of the other aspects mentioned in
this chapter, including reconfiguration, microsystems, connectivity, etc.

Job-shops are a matter of interest, both in historical sense as a drive for
flexible manufacturing as well as the relation to scheduling, specifically the job-
shop problem. The job-shop problem is a variation of the classical Travelling
Salesmen Problem (TSP). Where in the TSP problem the solution would be
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Figure 1.7: Architecture proposal of Cyber-physical Systems Source: (Lee
et al., 2015).

the shortest route between a number of points (cities), the job-shop problem
complicates the problem by introducing the limitation that a number of tasks
(jobs) have to be performed in a specific order that can only be performed
at a specific machine. The job-shop problem is therefore considered to be
NP hard and as such has been extensively researched in the for (schedule)
optimisation purposes, e.g. Applegate and Cook (1991). Of more interest is
specifically the work of Bourne and Fox (1984), which offers five principles for
the construction of systems to provide autonomous manufacturing. However,
as Bourne mentions, at that time the (complete) automation of the general
job-shop lies beyond the state of art.

Autonomic Computing is a field of interest since it addresses lowering
complexity by managing technology with technology Computing (2003). Auto-
nomic Computing was inspired by biology, where many processes are managed
and monitored in an autonomic manner, e.g. the human nerve system keeps
your temperature under control without a conscious effort. In IT systems this
can be used by delegating certain tasks or processes to adapting policies that
can take appropriate actions. These policies are based on a control loop that
perform an autonomic capability. The IBM paper organises the control loops
into four categories:

• Self-Configuring - The ability to drastically change in a changing envi-
ronment, e.g. hardware configuration.

• Self-Healing - Being able to discover, diagnose and diagnose disruptions,
e.g. detect system malfunctions.

• Self-Optimising - Automated optimisation to improve overall utilisation.

• Self-Protecting - Being able to anticipate and negate possible threats, e.g.
a robot that stops a planned move to prevent a collision by detecting an
object in its path.

1.2.2 Key Interests

From the state-of-the-art changes currently occurring in industry some specific
fields are identified that require specific attention, as they could provide key
interests to be able to increase flexibility and provide the ability to automate
the manufacturing of high-mix, low-volume products with the use of state-of-
the-art manufacturing systems:

1. Reconfigurability

2. Lowering Complexity

3. Autonomy

These three key points will be important aspects of the research and will
be discussed all throughout this work. As mentioned before, logistics like
supply management and scheduling will not be a key interest and will only
be discussed if they are either required or directly affected. The scope and
research focus will be discussed in more detail in the next chapter.

The overview of enablers, technological changes, and manufacturing paradigms
shows that there are a lot of developments in state of the art manufacturing
systems. For these changes to be brought to industry, it is important to exper-
iment with these technologies, lower their complexity, and make parts more
mature.

1.3 Thesis Overview

Figure 1.8 shows a first glance of what to come, but creating an overview of
the thesis.
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Figure 1.8: Overview of the thesis.

The Chapters can be split into 3 main parts:

Background:

Chapter 1 Introduction: Gives the background information and some motiva-
tion behind this research.

Chapter 2 Research Design: Discusses the research questions, methodology,
and hypothesis.

Chapter 3 Concept: Describes the generic concept that is used, including the
fundamental ideas and the requirements.

Main Chapters:

Chapter 4 Situational Awareness: Describes how to make smart use of avail-
able information to create a generic 2-step way for 6D localisation.

Chapter 5 Reconfiguration: Discusses how systems can be adapted and can
still cooperate without prior knowledge of each other.

Chapter 6 Architecture: Investigates how a system architecture can be set up
for use of grid manufacturing with autonomous and reconfigurable
systems that need to both perform and be flexible.

Chapter 7 System Behaviour: Defines how the system is controlled and can
be made safe.

Chapter 8 Validation and Utilisation: Shows which opportunities are given by
the developed systems and tests these in different cases.

Conclusion:

Chapter 9 Discussion: Evaluates the concepts that have been researched.

Chapter 10 Conclusion: Validates the work based on the original Research
Design.
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“If we knew what it was we 
were doing, it would not be 
called research, would it?”

― Albert Einstein
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Research Design

This thesis focuses on methods and concepts for flexible and agile manufac-
turing, i.e. the problems that arise when optimising for low-cost flexibility
of autonomous manufacturing machines. In order to define a set of research
questions we shall first discuss the problems and approach related to this work.

2.1 Research Approach

As observed in the introduction, technological advances and changes in indus-
try are starting to have an increasing impact on the manufacturing industry.
However, a true paradigm shift has not yet occurred, likely because the matu-
rity and efficiency of these new technologies have yet to be proven. As Leitão
states in the conclusion of his survey: ’The challenge is thus to develop in-
novative, agile and reconfigurable architectures for distributed manufacturing
control systems, using emergent paradigms and technologies that can provide
the answer to those requirements’ (Leitão, 2009). Leitão also identifies some
specific issues in this field, including:

1. The need for mature and proven technology - the majority uses labo-
ratorial control applications without the need of physical devices (Hall
et al., 2005).

2. Reconfigurability mechanisms - what architecture will support the soci-
ety of distributed entities? (Leitão, 2009).

3. Development-related aspects - current platforms have limited scalability
and robustness (Marik and McFarlane, 2005).

4. Prediction in disturbance handling systems - the integration of prediction
mechanisms with identification and recovery of disturbances that can
prevent these problems (Leitão, 2009).

The research in this thesis responds to these factors by creating concepts
and an architecture that will include the hardware systems. This way a prac-
tical implementation will be made that shows concepts that could be feasible
for industry.
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2.2 Six Manufacturing Principles

The focus will be based on a new concept of flexible manufacturing platforms
that produce products with a high mix and low volume. Six principles are
identified:

1. A range of products can, in principle, be dynamically built on demand,
i.e. the machines offer a (wide) range of generic services, which products
can use in such a way that they can be manufactured as long as the
required (generic) services are available.

2. Products can be identified and localised dynamically, i.e. the manufac-
turing systems should not need to be (re-)programmed to know and
identify specific products; any new product can be added at any time
into the production process.

3. Both products and manufacturing systems have no direct dependencies
and can act autonomously.

4. Hardware should be reconfigurable, i.e. both hardware and software
modules within a system should be able to be changed with limited
downtime. In the case of the software, compiling code should not be
required for a reconfigure action.

5. Machines should be low-cost and single-purpose, i.e. the flexibility that
is offered should be possible with limited investment costs to guarantee
experimental use and a valid business case.

6. System behaviour should be transparent and safe, i.e. the flexibility and
dynamic behaviour of the system must be guaranteed not to lead to a
high risk of use.

The six principles will lead to the ability to automate the creation of a
range of products that can be built on demand, i.e. all products can be
manufactured ad hoc as long as the parts and required services to assemble
them are available in the manufacturing systems.

The principles also focus on limiting complexity by creating a minimum
amount of interdependence between systems. The result is a concept that has
been called ’grid manufacturing’, where each manufacturing system delivers
a service to a product. Since products and the manufacturing systems have
their own purpose, i.e. the machine delivers a service, the product wishes to be
produced, both autonomous and will work together dynamically. Hence, the
system will not be a ’production line’, since the need for services will depend
on the specific product demand.

Figure 2.1: The Valley of Death, the gap between Research and (mature) prod-
uct development, source: https://www.sri.com/blog/brazil-visits-sri-discuss-
its-economic-development-roadmap - last accessed 23-12-2015.

Since the products will be manufactured dynamically without any specific
programming it is important that the products are still produced safely and
according to the specifications. The products will schedule themselves in ne-
gotiation with the manufacturing systems and, therefore, it is unknown which
services are required. The flexibility makes it difficult to establish demand,
and chances are that some manufacturing systems have a higher load than
others because of this.

2.3 Problem Statement

While many paradigms and technologies show promise, they are not yet con-
sidered mainstream in industry. As mentioned before in Section 1.1, the in-
dustry is not yet adopting many technologies and is waiting for more maturity
and proven technologies. The gap between the fundamental research of new
technologies and the adoption as a mature technology in a business product
is a widely known problem, which is called the ’Valley of Death’ (Murphy and
Edwards, 2003). Figure 2.1 shows the concept well by showing the amount of
investments that are available at different stages.

The figure shows that commonly there are large investments for fundamen-
tal and basic research. However, while this generates new technologies they
are commonly not sufficiently mature for corporations to be used. Therefore
new technologies need to be proven and tested by applied research to gain the
maturity that is required by industry. The applied research is not just used in
the practical sense, but also generates new combinations of technologies, new
concepts and experimental data that leads to new ideas.

The Valley of Death is a generic problem that needs to be taken into
account. However, based on the introduction and design principles we identify
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produced, both autonomous and will work together dynamically. Hence, the
system will not be a ’production line’, since the need for services will depend
on the specific product demand.

Figure 2.1: The Valley of Death, the gap between Research and (mature) prod-
uct development, source: https://www.sri.com/blog/brazil-visits-sri-discuss-
its-economic-development-roadmap - last accessed 23-12-2015.

Since the products will be manufactured dynamically without any specific
programming it is important that the products are still produced safely and
according to the specifications. The products will schedule themselves in ne-
gotiation with the manufacturing systems and, therefore, it is unknown which
services are required. The flexibility makes it difficult to establish demand,
and chances are that some manufacturing systems have a higher load than
others because of this.

2.3 Problem Statement

While many paradigms and technologies show promise, they are not yet con-
sidered mainstream in industry. As mentioned before in Section 1.1, the in-
dustry is not yet adopting many technologies and is waiting for more maturity
and proven technologies. The gap between the fundamental research of new
technologies and the adoption as a mature technology in a business product
is a widely known problem, which is called the ’Valley of Death’ (Murphy and
Edwards, 2003). Figure 2.1 shows the concept well by showing the amount of
investments that are available at different stages.

The figure shows that commonly there are large investments for fundamen-
tal and basic research. However, while this generates new technologies they
are commonly not sufficiently mature for corporations to be used. Therefore
new technologies need to be proven and tested by applied research to gain the
maturity that is required by industry. The applied research is not just used in
the practical sense, but also generates new combinations of technologies, new
concepts and experimental data that leads to new ideas.

The Valley of Death is a generic problem that needs to be taken into
account. However, based on the introduction and design principles we identify
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five specific problems:

Problem 1 Object Awareness - How can reconfigurable machines identify and
handle a priori unknown objects?

Problem 2 Reconfigurable systems - It should be possible to quickly adapt
the hardware and reconfigure the system by changing its hardware
modules.

Problem 3 Architectural performance / intelligence gap - The platform should
both be able to show ’intelligent’ behaviour and have real-time
performance to control the hardware.

Problem 4 Abstract Services - To use manufacturing as a service and limit
complexity, the hardware cannot be ’known’ by the product.

Problem 5 System Behaviour - While systems should be autonomous and mod-
ular, and work in a dynamic ’chaotic’ environment, their behaviour
should also be predictable and ’safe’.

Discussed in more detail: The first problem, Object Awareness, focuses
on the always complex solutions to visually find, localise and inspect objects
that are not known a priori. Especially in the context of reconfigurable man-
ufacturing machines, where both the manufacturing machine itself can have
changing properties, e.g. camera position or its changing working area. For
computers it is inherently difficult to recognise objects in a dynamic, i.e. un-
known, environment. Commonly computer vision is improved by controlling
and standardising as many variables as possible. However, since reconfigurable
manufacturing systems can be configured in many ways and objects are un-
known in advance it is impossible to control all variables, e.g. positioning of
the object, lighting, and position of the cameras can be different in any situa-
tion. Since the working area can also differ and objects are commonly 3D this
makes it more and more complex to accurately visually analyse the objects
in real-time. Objects should not just be identified by their shape (which is a
2D problem), but they can also be upside down, rotated or even on their side.
Hence, to handle a product it is important for the equiplet to have a precise
6-dimensional measurement of the object by identifying it correctly, localising
its x, y, z, rotation, pitch, and yaw positions.

The second problem focuses on the reconfigurable aspect of the systems.
Since demand can change, it is important to adapt the systems to the (possibly
new) demand. To create maximum flexibility, the system should be easy to
adapt and if possible automatically update its use and services so they can
become available to the products in the grid. A changing system is difficult

to control and use, since normally multiple manufacturing systems have to
cooperate to create one product together.

The third problem is how can you create an architecture that combines
the dynamic behaviour and flexibility for high-level functionality, i.e. un-
derstands its environment and cooperates with other systems in the grid,
and low-level functionality, i.e. high-performance hardware control and al-
gorithms. These different functionalities are based on different behaviour and
therefore have different requirements. High-level functionality is based on
abstract cognitive processes that use networked data and slow heuristic pro-
cesses. Low-level processes are based on strict rule-based systems that have a
direct (possibly real-time) impact on the actuators. As such they are usually
written in native code using real-time systems. While native code could grant
a higher performance it is also more difficult to develop, lowering flexibility
and increasing complexity. Additionally, it is important that the high-level
functionality will have no performance impact on the low-level systems.

The fourth problem focuses on the use of the manufacturing systems. The
grid manufacturing concept asks for autonomous systems that provide generic
services. Hence, the product is not aware of which manufacturing system will
produce it beforehand. As a result, the product and the manufacturing system
are not designed specifically for each other. For a product to be able to use the
generic service that is offered they should be able to interface and understand
each other. This asks for an ontology that both product and manufacturing
system can use. The architecture should take into account which services and
limits it can provide and match these to the requirements of the product.

The fifth problem focuses on the system behaviour. Since products are
unknown and manufacturing hardware can be reconfigured there are many
dynamic factors in a grid. Hence, it is difficult to define its exact behaviour.
To be sure of the exact manufacturing specifications and safety aspects it is
required to create specifications and procedures for actions that a hardware
module can perform. A system should be created that defines the behaviour
and describes how it will act during diverse situations like starting up/shutting
down or errors. It is important that, even when dealing with new configura-
tions or products, the machines can remain flexible in such a way that it can
adapt to new situations, but at the same time be safe to use and not damage
anything when performing these new actions.

2.4 Research Design Parameters

Based on the problems and principles, the Research Design Parameters can be
identified and formulated (see below). Research Design Parameters are used
here as presumptions that couple possible requirements for the solution to the
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five specific problems:

Problem 1 Object Awareness - How can reconfigurable machines identify and
handle a priori unknown objects?

Problem 2 Reconfigurable systems - It should be possible to quickly adapt
the hardware and reconfigure the system by changing its hardware
modules.

Problem 3 Architectural performance / intelligence gap - The platform should
both be able to show ’intelligent’ behaviour and have real-time
performance to control the hardware.

Problem 4 Abstract Services - To use manufacturing as a service and limit
complexity, the hardware cannot be ’known’ by the product.

Problem 5 System Behaviour - While systems should be autonomous and mod-
ular, and work in a dynamic ’chaotic’ environment, their behaviour
should also be predictable and ’safe’.

Discussed in more detail: The first problem, Object Awareness, focuses
on the always complex solutions to visually find, localise and inspect objects
that are not known a priori. Especially in the context of reconfigurable man-
ufacturing machines, where both the manufacturing machine itself can have
changing properties, e.g. camera position or its changing working area. For
computers it is inherently difficult to recognise objects in a dynamic, i.e. un-
known, environment. Commonly computer vision is improved by controlling
and standardising as many variables as possible. However, since reconfigurable
manufacturing systems can be configured in many ways and objects are un-
known in advance it is impossible to control all variables, e.g. positioning of
the object, lighting, and position of the cameras can be different in any situa-
tion. Since the working area can also differ and objects are commonly 3D this
makes it more and more complex to accurately visually analyse the objects
in real-time. Objects should not just be identified by their shape (which is a
2D problem), but they can also be upside down, rotated or even on their side.
Hence, to handle a product it is important for the equiplet to have a precise
6-dimensional measurement of the object by identifying it correctly, localising
its x, y, z, rotation, pitch, and yaw positions.

The second problem focuses on the reconfigurable aspect of the systems.
Since demand can change, it is important to adapt the systems to the (possibly
new) demand. To create maximum flexibility, the system should be easy to
adapt and if possible automatically update its use and services so they can
become available to the products in the grid. A changing system is difficult

to control and use, since normally multiple manufacturing systems have to
cooperate to create one product together.

The third problem is how can you create an architecture that combines
the dynamic behaviour and flexibility for high-level functionality, i.e. un-
derstands its environment and cooperates with other systems in the grid,
and low-level functionality, i.e. high-performance hardware control and al-
gorithms. These different functionalities are based on different behaviour and
therefore have different requirements. High-level functionality is based on
abstract cognitive processes that use networked data and slow heuristic pro-
cesses. Low-level processes are based on strict rule-based systems that have a
direct (possibly real-time) impact on the actuators. As such they are usually
written in native code using real-time systems. While native code could grant
a higher performance it is also more difficult to develop, lowering flexibility
and increasing complexity. Additionally, it is important that the high-level
functionality will have no performance impact on the low-level systems.

The fourth problem focuses on the use of the manufacturing systems. The
grid manufacturing concept asks for autonomous systems that provide generic
services. Hence, the product is not aware of which manufacturing system will
produce it beforehand. As a result, the product and the manufacturing system
are not designed specifically for each other. For a product to be able to use the
generic service that is offered they should be able to interface and understand
each other. This asks for an ontology that both product and manufacturing
system can use. The architecture should take into account which services and
limits it can provide and match these to the requirements of the product.

The fifth problem focuses on the system behaviour. Since products are
unknown and manufacturing hardware can be reconfigured there are many
dynamic factors in a grid. Hence, it is difficult to define its exact behaviour.
To be sure of the exact manufacturing specifications and safety aspects it is
required to create specifications and procedures for actions that a hardware
module can perform. A system should be created that defines the behaviour
and describes how it will act during diverse situations like starting up/shutting
down or errors. It is important that, even when dealing with new configura-
tions or products, the machines can remain flexible in such a way that it can
adapt to new situations, but at the same time be safe to use and not damage
anything when performing these new actions.

2.4 Research Design Parameters

Based on the problems and principles, the Research Design Parameters can be
identified and formulated (see below). Research Design Parameters are used
here as presumptions that couple possible requirements for the solution to the
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problem statement. These presumptions will be validated by experiments.
The main design parameter is that new (software) technologies, including

reconfigurable and autonomous systems, could be used to create a new flexible
manufacturing paradigm that is (cost-)efficient and predictable. The flexibil-
ity will have to provide for a much shorter time to market and an increased
variety in products that can be manufactured in parallel. The challenge for
the main design parameter is to keep the complexity (and therefore the prac-
tical applicability) of the smart and flexible approach under control. This has
to be validated by developing a proof of concept that shows the abilities, per-
formance and stability of such an ’agile’ architecture. To assess the feasibility
and practical implementation an experimental system will be fully developed,
including low-cost hardware designed for this purpose. In more detail this
brings us to the following five Design Parameters:

RP1 Machines can effectively provide generic services that can be used by
different kind of products that are not known a priori, i.e. new products
can be built on demand by machines never specifically designed for this
product.

RP2 Computer vision is an important part of flexible manufacturing and can
be simplified by making use of diverse data which is already available in
the system.

RP3 The hardware of a machine can be reconfigured without the need of
reprogramming the software.

RP4 The use of a simulator and transparent software control using stan-
dardised states can increase safety for reconfigurable manufacturing ma-
chines.

RP5 Cooperating agents in a grid in a non-hierarchical, i.e. heterarchical
manner can be a flexible and efficient way to manufacture products in
low quantities.

In more detail:
RP1 states that it would be possible to work with generic services, essen-

tially making use of the expertise or capability of a system like you would make
use of a human professional. Instead of designing a machine for one specific
a priori set of actions it could perform anything within known boundaries.
Much like a human professional, e.g. a carpenter who can build any product
on demand, only limited by his competence and available material.

RP2 focuses on a specific aspect of flexibility, namely the ability of a recon-
figurable machine to dynamically identify and interact with a priori unknown
products.

RP3 states that the hardware of a system should be reconfigurable, without
the use of a mechanic or engineer to reprogram the software. This also implies
that not just the service is flexible, as mentioned in RH1, but the hardware
itself should be flexible, in a sense that will become clear later.

RP4 The risks involved by dynamic manufacturing with autonomous re-
configurable manufacturing machines could be lowered with the use of simu-
lation and a transparent state machine.

RP5 extends the idea of flexibility not only to a machine or service it-
self, but to a group of machines and how they are used. Basically this design
parameter states that different autonomous machines could be managed dy-
namically in different ways to increase efficiency.

2.5 Research Questions

The problem statement and design parameters leads us to the main Research
Question (RQ). RQ0: What could be the role of Reconfigurable Manufacturing
Machines in the automation of high-mix, low-volume production?

This main question is split into five research questions:

RQ1 How can the detection and localisation of (previously unknown) objects
be simplified and generalised?

RQ2 Can reconfigurable manufacturing systems be controlled without the
need to reprogram them for every new product or hardware module?

RQ3 What options are available to combine flexibility and performance for
software architecture in grid manufacturing?

RQ4 What risks are introduced due to the reconfigurable and dynamic be-
haviour and how can they be mitigated?

RQ5 What is the best way to utilise the possibilities of grid manufacturing
and therewith validate its efficiency?

2.6 Research Methodology

The first step will be literature research, the second step to design a prototype
architecture, and third to develop and test the architecture. For the third
step a prototype architecture and several hardware and software systems will
be developed to act as a proof of concept. This system will be the basis of
future research and will be combined with several emulators to be tested in
a large variety of cases. The study will combine quantitative and qualitative
elements:
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problem statement. These presumptions will be validated by experiments.
The main design parameter is that new (software) technologies, including

reconfigurable and autonomous systems, could be used to create a new flexible
manufacturing paradigm that is (cost-)efficient and predictable. The flexibil-
ity will have to provide for a much shorter time to market and an increased
variety in products that can be manufactured in parallel. The challenge for
the main design parameter is to keep the complexity (and therefore the prac-
tical applicability) of the smart and flexible approach under control. This has
to be validated by developing a proof of concept that shows the abilities, per-
formance and stability of such an ’agile’ architecture. To assess the feasibility
and practical implementation an experimental system will be fully developed,
including low-cost hardware designed for this purpose. In more detail this
brings us to the following five Design Parameters:

RP1 Machines can effectively provide generic services that can be used by
different kind of products that are not known a priori, i.e. new products
can be built on demand by machines never specifically designed for this
product.

RP2 Computer vision is an important part of flexible manufacturing and can
be simplified by making use of diverse data which is already available in
the system.

RP3 The hardware of a machine can be reconfigured without the need of
reprogramming the software.

RP4 The use of a simulator and transparent software control using stan-
dardised states can increase safety for reconfigurable manufacturing ma-
chines.

RP5 Cooperating agents in a grid in a non-hierarchical, i.e. heterarchical
manner can be a flexible and efficient way to manufacture products in
low quantities.

In more detail:
RP1 states that it would be possible to work with generic services, essen-

tially making use of the expertise or capability of a system like you would make
use of a human professional. Instead of designing a machine for one specific
a priori set of actions it could perform anything within known boundaries.
Much like a human professional, e.g. a carpenter who can build any product
on demand, only limited by his competence and available material.

RP2 focuses on a specific aspect of flexibility, namely the ability of a recon-
figurable machine to dynamically identify and interact with a priori unknown
products.

RP3 states that the hardware of a system should be reconfigurable, without
the use of a mechanic or engineer to reprogram the software. This also implies
that not just the service is flexible, as mentioned in RH1, but the hardware
itself should be flexible, in a sense that will become clear later.

RP4 The risks involved by dynamic manufacturing with autonomous re-
configurable manufacturing machines could be lowered with the use of simu-
lation and a transparent state machine.

RP5 extends the idea of flexibility not only to a machine or service it-
self, but to a group of machines and how they are used. Basically this design
parameter states that different autonomous machines could be managed dy-
namically in different ways to increase efficiency.

2.5 Research Questions

The problem statement and design parameters leads us to the main Research
Question (RQ). RQ0: What could be the role of Reconfigurable Manufacturing
Machines in the automation of high-mix, low-volume production?

This main question is split into five research questions:

RQ1 How can the detection and localisation of (previously unknown) objects
be simplified and generalised?

RQ2 Can reconfigurable manufacturing systems be controlled without the
need to reprogram them for every new product or hardware module?

RQ3 What options are available to combine flexibility and performance for
software architecture in grid manufacturing?

RQ4 What risks are introduced due to the reconfigurable and dynamic be-
haviour and how can they be mitigated?

RQ5 What is the best way to utilise the possibilities of grid manufacturing
and therewith validate its efficiency?

2.6 Research Methodology

The first step will be literature research, the second step to design a prototype
architecture, and third to develop and test the architecture. For the third
step a prototype architecture and several hardware and software systems will
be developed to act as a proof of concept. This system will be the basis of
future research and will be combined with several emulators to be tested in
a large variety of cases. The study will combine quantitative and qualitative
elements:
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• Performance: quantitative research - based on empirical data using ex-
periments from live proof of concepts and simulators.

• Abilities: qualitative research - comparing designs and architecture per-
formance based on correlation.

• Processes: qualitative comparison - based on cases with (partly) quan-
titative data.

2.7 Research Objectives

The main Research Objectives (RO) describe how the research is achieved,
i.e. which means will be used or created for the research. The central objec-
tive is to develop a proof of concept, based on the agile control architecture
that maximises automated flexibility for high-mix, low-volume products. This
objective is specified by the following (sub)objectives:

RO1 The concepts and requirements that are necessary to satisfy the design
parameters: A flexible manufacturing system, which autonomously han-
dles dynamic products on demand and which is reconfigurable and safe
to use.

RO2 A robust generic approach for dynamically handling objects.

RO3 Investigate how machines can provide their services while being recon-
figurable.

RO4 A software architecture that gives both the performance and flexibility
required for the defined concepts, which gives the products and machines
the means to effectively cooperate to dynamically build high-mix, low-
volume products.

RO5 Predictable states to create safe use of reconfigurable machines in a dy-
namic environment.

RO6 Test the capabilities and efficiency of the system using simulation of
multiple cases.

2.8 Scope

The thesis will highlight the system engineering and software aspects specifi-
cally, and will consider some hardware aspects when they are relevant for the
overall concept.

The research intentionally tries to focus on specific items. Practical im-
plementation is seen as an important aspect due to the fact that practical
problems have a large impact on the maturity of technology and the adop-
tion in industry. Therefore hardware and behavioural aspects are taken into
account. However, some aspects are intentionally avoided when possible, e.g.
scheduling, which even though it is an important field and has a high impact
on the efficiency, scheduling is a field that has been researched to great depth.
Therefore scheduling research is used in this thesis, but will only be discussed
if it is of direct influence on the expected results that the research focuses on.

A specific limitation in this research is that the research is not meant
for mass manufacturing means. Mass production will likely be more efficient
with classic (less flexible) manufacturing means. Since these are designed
specifically for high performance and throughput. This research focuses on
opening automation to new markets where time to market and many different
products in lower quantities are key.

To answer the research questions it is important to cover a variety of as-
pects, without losing focus on the original goal: creating even more flexibility
for manufacturing systems. This will bring the research in a multidisciplinary
area that connects with multiple fields, including: System Engineering, Em-
bedded Systems, Intelligent Systems and Manufacturing.

2.9 Structure of the Thesis

Figure 2.2 gives an overview that shows where in the thesis the Research
Design Parameters, Research Questions, and Objectives are discussed. Note
that Chapter 3 does not contain any research questions as it primarily adds
further specifications to the generic concept that was first introduced by Puik
and Moergestel (2010) and discussed in the PhD thesis of Moergestel (2014).
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• Performance: quantitative research - based on empirical data using ex-
periments from live proof of concepts and simulators.

• Abilities: qualitative research - comparing designs and architecture per-
formance based on correlation.

• Processes: qualitative comparison - based on cases with (partly) quan-
titative data.

2.7 Research Objectives

The main Research Objectives (RO) describe how the research is achieved,
i.e. which means will be used or created for the research. The central objec-
tive is to develop a proof of concept, based on the agile control architecture
that maximises automated flexibility for high-mix, low-volume products. This
objective is specified by the following (sub)objectives:

RO1 The concepts and requirements that are necessary to satisfy the design
parameters: A flexible manufacturing system, which autonomously han-
dles dynamic products on demand and which is reconfigurable and safe
to use.

RO2 A robust generic approach for dynamically handling objects.

RO3 Investigate how machines can provide their services while being recon-
figurable.

RO4 A software architecture that gives both the performance and flexibility
required for the defined concepts, which gives the products and machines
the means to effectively cooperate to dynamically build high-mix, low-
volume products.

RO5 Predictable states to create safe use of reconfigurable machines in a dy-
namic environment.

RO6 Test the capabilities and efficiency of the system using simulation of
multiple cases.

2.8 Scope

The thesis will highlight the system engineering and software aspects specifi-
cally, and will consider some hardware aspects when they are relevant for the
overall concept.

The research intentionally tries to focus on specific items. Practical im-
plementation is seen as an important aspect due to the fact that practical
problems have a large impact on the maturity of technology and the adop-
tion in industry. Therefore hardware and behavioural aspects are taken into
account. However, some aspects are intentionally avoided when possible, e.g.
scheduling, which even though it is an important field and has a high impact
on the efficiency, scheduling is a field that has been researched to great depth.
Therefore scheduling research is used in this thesis, but will only be discussed
if it is of direct influence on the expected results that the research focuses on.

A specific limitation in this research is that the research is not meant
for mass manufacturing means. Mass production will likely be more efficient
with classic (less flexible) manufacturing means. Since these are designed
specifically for high performance and throughput. This research focuses on
opening automation to new markets where time to market and many different
products in lower quantities are key.

To answer the research questions it is important to cover a variety of as-
pects, without losing focus on the original goal: creating even more flexibility
for manufacturing systems. This will bring the research in a multidisciplinary
area that connects with multiple fields, including: System Engineering, Em-
bedded Systems, Intelligent Systems and Manufacturing.

2.9 Structure of the Thesis

Figure 2.2 gives an overview that shows where in the thesis the Research
Design Parameters, Research Questions, and Objectives are discussed. Note
that Chapter 3 does not contain any research questions as it primarily adds
further specifications to the generic concept that was first introduced by Puik
and Moergestel (2010) and discussed in the PhD thesis of Moergestel (2014).
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Figure 2.2: Overview of the thesis that connects the Chapters, with the re-
search questions, research design parameters and objectives.
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The Concept of Grid Manufacturing

Puik and Moergestel (2010) introduced two new terms, namely production
Grid and a grid of reconfigurable manufacturing systems, the two terms evolved
into a concept that has been called Grid Manufacturing. Grid Manufacturing
is meant as a fully automated manufacturing approach, based on reconfig-
urable manufacturing machines that offer generic services that products can
utilise dynamically. Part of this idea, the so called virtual ’product agent’,
which will be discussed in more detail later, was investigated by Moergestel
(2014). This work expends these concepts by adding the so far unexplored con-
cept of the reconfigurable manufacturing machines themselves. Parts of this
chapter has been based on earlier work (Telgen et al., 2015b, 2012, 2015a).

3.1 Conceptual Idea of Grid Manufacturing

The main concept of Grid Manufacturing is based on the philosophy of Cyber-
Physical Systems (Lee and Seshia, 2011). A grid will consist of three main
types of systems.

• Reconfigurable Manufacturing Machines - The machines or robots that
will actually conduct the assembly/manufacturing process.

• The product - Which is also seen as an inherent separate and autonomous
system within Grid manufacturing.

• Logistic Systems - An example is a dynamic transport system with un-
manned autonomous ground vehicles or multi parallel conveyor belts to
transport systems dynamically, i.e. without predefined routes, between
the manufacturing systems.

These three types of systems will be autonomous and can interact dy-
namically in a cooperating non-hierarchical manner. This is in line with the
idea of Holonic Manufacturing (Höpf and Schaeffer, 1997). In general, both
Cyber-Physical Systems and holonic ideas are partly based on abandoning of
hierarchical control, moving towards autonomous, self-managed systems that
mutually interact and cooperate. The philosophy behind Grid Manufactur-
ing is also seen in different areas. For instance, (Laloux, 2015) mentions in
his book ’Reinventing Organisations’ that each period in time has its own or-
ganisational paradigm. In the last years we have been moving towards more
self-management, and the concept of ’wholeness’, i.e. striving not only for
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The Concept of Grid Manufacturing

Puik and Moergestel (2010) introduced two new terms, namely production
Grid and a grid of reconfigurable manufacturing systems, the two terms evolved
into a concept that has been called Grid Manufacturing. Grid Manufacturing
is meant as a fully automated manufacturing approach, based on reconfig-
urable manufacturing machines that offer generic services that products can
utilise dynamically. Part of this idea, the so called virtual ’product agent’,
which will be discussed in more detail later, was investigated by Moergestel
(2014). This work expends these concepts by adding the so far unexplored con-
cept of the reconfigurable manufacturing machines themselves. Parts of this
chapter has been based on earlier work (Telgen et al., 2015b, 2012, 2015a).

3.1 Conceptual Idea of Grid Manufacturing

The main concept of Grid Manufacturing is based on the philosophy of Cyber-
Physical Systems (Lee and Seshia, 2011). A grid will consist of three main
types of systems.

• Reconfigurable Manufacturing Machines - The machines or robots that
will actually conduct the assembly/manufacturing process.

• The product - Which is also seen as an inherent separate and autonomous
system within Grid manufacturing.

• Logistic Systems - An example is a dynamic transport system with un-
manned autonomous ground vehicles or multi parallel conveyor belts to
transport systems dynamically, i.e. without predefined routes, between
the manufacturing systems.

These three types of systems will be autonomous and can interact dy-
namically in a cooperating non-hierarchical manner. This is in line with the
idea of Holonic Manufacturing (Höpf and Schaeffer, 1997). In general, both
Cyber-Physical Systems and holonic ideas are partly based on abandoning of
hierarchical control, moving towards autonomous, self-managed systems that
mutually interact and cooperate. The philosophy behind Grid Manufactur-
ing is also seen in different areas. For instance, (Laloux, 2015) mentions in
his book ’Reinventing Organisations’ that each period in time has its own or-
ganisational paradigm. In the last years we have been moving towards more
self-management, and the concept of ’wholeness’, i.e. striving not only for
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yourself and the immediate professional needs of the situation, but also for
others and aspects that are out of the immediate professional scope (such as
durability, social practices). Advances that create connected computing plat-
forms, like embedded systems and the Internet of Things (IoT), enable these
human organisational paradigms to move into the technical realm. This devel-
opment fundamentally changes the way machines and robots could be utilised.
The move in current thinking could also directly impact business. Hence, the
way we think of efficiency should evolve to encompass the ideas of ’wholeness’,
with a growing importance in flexibility and durability. This way of thinking
is one of the fundamental thoughts behind Grid Manufacturing.

3.2 Grid Manufacturing

For the reconfigurable manufacturing systems a standardised hardware plat-
form will be designed. It will consist of ’equiplets’, as they can be easily
equipped with a number of modules (Puik and Moergestel, 2010). Figure 3.1
shows a simplified example of the concept of a grid with autonomous systems.
Equiplets provide their services based on their configuration to the grid server.
A unique product is aware of its own design and request the first step in its
manufacturing process, i.e. to print a number of 3D parts. The grid server
replies with a list of possible equiplets that can provide a service like 3D print-
ing. This prompts the product to negotiate with the capable equiplets and to
find out if the equiplet can perform the service it requires within its requested
specifications, which may include its needs in terms of schedule, quality, ma-
terial, etc. The possible services that an equiplet can provide can change any
time, based on either demand of the product or strategies that improve effi-
ciency in the grid. In the shown example equiplet 1 mentions it might be able
to perform the requested production step. However, it needs to reconfigures
first. The product will keep negotiating with the equiplets in the grid until it
finds a suitable solution.

Classic manufacturing is based on a Line Cell Module Device (LCMD)
model as shown in Figure 3.2. The model represents a modular manufacturing
process based on 4 hierarchical levels. The line is literally a ’manufacturing
line’ that is made up of a number of cells where a specific job is performed. A
cell commonly uses multiple modules that perform specific actions, e.g. pick
& place. The module can be decomposed even further into devices, e.g. a pick
& place module will likely consist of several sensors and actuators, in which
case each sensor and actuator can be seen as a device. The LCMD model is
optimised for cost-efficient manufacturing of products that are made in high
quantities. Since it is a linear model where products are made in a line, any
change at any level will influence the entire manufacturing process. Hence,

Figure 3.1: The simplified concept of grid manufacturing.

the product as well as the manufactured process will have to be matured
completely before actual mass manufacturing can start.

The concept of grid manufacturing provides the opportunity to dynam-
ically adapt to both product and equipment at any level, while the overall
impact on production efficiency will be as limited as possible. This is per-
formed by autonomous reconfigurable systems that provide generic services
that products can use. All systems in the grid should cooperate to become self-
organising. Because of the reconfigurable aspect of these systems, equiplets
are not arranged in a line, but in a grid to emphasize that they can be used
sequentially based on the current dynamic demand dynamic in the sense that
different products can be made at any time using equiplets in any order us-
ing (soft) real-time negotiation and scheduling to plan how a possibly unique
product will be manufactured. Figure 3.3 shows a rendering of an example
grid with 12 equiplets, where every equiplet can have a different configura-
tion to provide a variety of services that are required for the manufacturing
process. Note that a grid does not require to have any specific form or size;
depending on the demand they can be placed in any relative position based
on the local logistic setup of the factory. It is imagined that a grid can contain
a large number of equiplet, e.g. 100 equiplets that offer about 20 different
generic services should be an option.

Equiplets provide capabilities that are based on the configuration of the
specific modules that are installed. In the grid manufacturing context, recon-
figuration is defined as adding/removing/changing modules within the equiplet
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Figure 3.2: Classic Line Cell Module Device (LCMD) structure.

so as to change its capabilities. Reconfiguration includes both the physical
change as the adaptation and configuration of the software to control the
equiplet.

In contrast to LCMD, the architecture for Grid Manufacturing is called
the Grid Equiplet Module (GEM) Architecture, as shown in Figure 3.4. With
GEM the systems are loosely coupled, the Grid layer provides services to the
autonomous equiplets. Modules are commonly designed as Components off
the Shelf (COTS).

Olhager (2010) describes the Customer Order Decoupling Point (COPD),
which is defined as the point in the value chain, where the product can still be
linked to a customer order. These can be split in four categories: (1) make-to-
stock (MTS), (2) Assemble-to-order (ATO), (3) make-to-order (MTO), and (4)
engineer-to-order (ETO). From the Product perspective, Grid Manufacturing
can immediately manufacture a range of numbers, as long as the, capacity,
capability, and parts are available. Hence, this would be typical as assemble-
to-order.

Besides delivering flexibility, the concept also introduces a manner to bring
the product designers and production experts closer together. In the past,
lines were made specifically for one product, and as such it would come at a
high cost to take a working line offline to create a prototype for a new product.
Grids can dynamically handle various products in parallel, such that a product
designer is able to use the same manufacturing equipment that is used for the

Figure 3.3: Example of a small Grid Structure.

Figure 3.4: GEM Architecture.

final manufacturing to create prototypes and test the production phase. This
shortens the time-to-market and lowers costs.

To further work out the required platform and analyse the success of this
concept the requirements should first be discussed.

3.3 Requirements

As stated in the research objectives section 2.7, the main objective is: ”To
develop a proof of concept, based on the agile control architecture that max-
imises (automated) flexibility for high-mix, low-volume products”. The proof
of concept will be used to answer the research questions.

The requirements will be the basis for the grid manufacturing architecture
and the proof of concept. Since the design of complex systems as used in
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final manufacturing to create prototypes and test the production phase. This
shortens the time-to-market and lowers costs.

To further work out the required platform and analyse the success of this
concept the requirements should first be discussed.

3.3 Requirements

As stated in the research objectives section 2.7, the main objective is: ”To
develop a proof of concept, based on the agile control architecture that max-
imises (automated) flexibility for high-mix, low-volume products”. The proof
of concept will be used to answer the research questions.

The requirements will be the basis for the grid manufacturing architecture
and the proof of concept. Since the design of complex systems as used in
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grid manufacturing is challenging, the requirements are loosely based on the
Axiomatic Design methodology developed by MIT (Suh, 2001). Axiomatic
design uses design principles or axioms, i.e. premises or starting points for
reasoning. In Axiomatic design the characteristics and needs are translated
into four domains.

• Customer Domain - Customer Attributes (CA) - The customer’s needs.

• Functional Domain - Functional Requirements (FR) - What it needs to
do.

• Physical Domain - Design Parameters (DP) - How can it be made.

• Process Domain - Process Variables (PV) - The variables that charac-
terise the design in the process domain.

The Physical Domain and the Process Domain will not be discussed at
this time, since the high amount of required detail will not contribute to the
concept described in this chapter. However, it will be discussed in separate
chapters when it directly contributes to the research.

The requirements will be split into three different subsections. First, the
motivation behind the concept and its requirements will be discussed; second,
the customer attributes; and third, the functional requirements.

3.3.1 Motivation

Successful launch of new and unique products will lead to competitive advan-
tages, which are at the heart of a firms performance in competitive markets;
this statement made by Puik (2016) is one of the main drives behind Grid
Manufacturing, which is designed to optimise flexibility and be able to bring
new products to the market. His statement was based on Porter and Advan-
tage (1985): ”Introducing a significant technological innovation can allow a
firm to lower cost and enhance differentiation at the same time, and perhaps
achieve both strategies. Introducing new automated manufacturing technolo-
gies can have this effect.” Koren (2006) gives a similar message by discussing
that high production efficiency and rapid response to changing customer de-
mand are dominant conditions for enterprises to stay successful. All these
remarks emphasise the need for rapid automated adaptability.

The global market is influenced by increasing purchase power and glob-
alisation. Hence, to stay competitive it is essential to be able to quickly
industrialise a product. This is also the message of the PhD thesis Manuscript
of Puik (2016). He discusses that being able to bring a product to the mar-
ket quickly is an important aspect of creating sufficient market penetration,
which will also extend the product life cycle This is shown in Figure 3.5, if

the introduction of the new market is delayed this would result in a loss of
turnover.

Figure 3.5: Delayed market introduction reduces sales and duration of sales
of products; total turnover will be substantially lower. (Puik, 2016)

Puik mentions four important aspects, three of which are directly con-
nected to Grid Manufacturing: (1) The pressure on lead time, i.e. the total
time required to manufacture an item (production, queue, inspection, etc.),
is leading to a change in the production process. Manufacturing equipment
should be ’agile’; in other words, it should be able to adapt quickly and as
such be able to bring a new product to market quickly. This is the area of
Reconfigurable Manufacturing Systems (Koren, 2006; Mehrabi et al., 2000;
Gunasekaran, 1999; ElMaraghy, 2005; Puik et al., 2013b). This view is also
supported by the survey of agent-based distributed manufacturing control by
Leitão (2009), who not only confirms the need for innovative, agile and recon-
figurable architectures, but also mentions that industry is slow to adopt these
new technologies. This is mainly because of the focus on fundamental proper-
ties, like scheduling and efficiency. However, the focus should become practical
application and integration of systems in such a way that they can be applied
directly in industry (Shen et al., 2006). (2) The development of new product
freezes the resources of a company, which are then only released gradually after
market introduction. This slows down the company in a fast-changing market.
Hence, there is the need for (i) quicker market introduction, (ii) more efficient
product development, and (iii) effective manufacturing engineering followed by
pilot production and ramp-up to required production numbers (Moore, 1998).
(3) Based on Onori and Barata Oliveira (2010) experience in the European
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pilot production and ramp-up to required production numbers (Moore, 1998).
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EUPASS project (Evolvable Ultra-Precision Assembly Systems) Puik men-
tions the difficult relation between ’Product Development and Manufacturing
Engineering. This is primarily due to the fact that processes being catered
for application in the assembly process, systems are insufficiently documented
and structured. Hence, a ’Design for Assembly’ strategy could be applied that
incorporates designers and production engineers to work together on the prod-
uct design. However, in reality these people work at different locations and
communication flaws are common in the industrialisation process. Therefore,
grid manufacturing will bring the industrialisation right at the doorstep of the
designer, by being able to experiment with the manufacturing process itself,
and with limited to no influence to overall production capacity of the grid.

3.3.2 Customer Attributes

The Customer Attributes describe the needs of the customer. In this case the
customer is a manufacturing company that wants to automate the manufac-
turing of high-mix, low volume products.

Based on the motivation, the following aspects are identified as being im-
portant for the Grid Manufacturing proof of concept:

• Amodular and reconfigurable design - to be able to automatically assemble-
to-order;

• Low-cost - to be able to be competitive on the market;

• A practical ’applied’ implementation - such that parts of the proof of
concept can be applied to industry in the short term;

• The part/product transport system should be flexible - to handle differ-
entiated automated assemble-to-order products;

• Machines should deliver generic services - as well as handle differentiated
automated assemble-to-order products.

While also of interest, human interaction within grid manufacturing is
placed out of the scope for this thesis.

3.3.3 Functional Requirements

The functional requirements in Axiomatic Design are given by answering the
question, ’what should the system do?’ This is placed in the scope of all soft-
ware systems for multiple autonomous reconfigurable manufacturing machines.
At this time only the high-level functional requirements that are typical for
grid manufacturing are mentioned. Some of these requirements will be used

for decomposition to more specific requirements in later chapters. Note that
the developed software for Grid Manufacturing consists of more than 2500
code source files and as such are only discussed in this Chapter on a higher
abstracted level.

The high-level conceptual functional requirements are clustered to a three-
level decomposition for the manufacturing systems in the grid and a fourth
for the product entity that represents the product:

Grid A decentralised system where equiplets and products cooperate.

Equiplet An autonomous, modular, reconfigurable, single-service, low-cost
manufacturing machine.

Module A hardware module that provides one specific function within an
equiplet.

Product The entity that will represent the product.

Grid Level

The grid level offers a number of services that support the equiplets and pos-
sible logistic systems. The grid in general has no hierarchical control of its
underlying systems (the equiplets, products, etc.), since this would limit its
flexibility and complexity. Hence, the functional requirements of the Grid ex-
plicitly mentions things it should ’not’ do, like adapting, i.e. reconfiguring
equiplets or adding or removing equiplets entirely without interference to the
overall grid. To enable this change and create the ability to dynamically manu-
facture differentiated products on order it is required to have a transportation
system that can dynamically create a custom path between the equiplets.
Hence, there are four Functional Requirements for the grid level.

The grid should be able:

GFR1. To offer generic services to a variety of differentiated products.

GFR2. To validate and assess its own efficiency.

GFR3. To adapt (remove or add) services/equiplets with limited to no inter-
ference to other products.

GFR4. To provide for product transport dynamically between each equiplet.

What is required for GFR1, and GFR3 is discussed in more detail in Chap-
ter 5. Also, GFR2 is used in Chapter 8, where reconfiguration is initiated based
on the overall efficiency, i.e. utilisation, of the grid. GFR4 is stated as a con-
dition, but is not discussed in detail since there are several options available
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to perform this, e.g. in the related field of order picking (De Koster et al.,
2007), which could be applied for this cause. Or, more directly connected to
Grid Manufacturing, the work of Moergestel et al. (2015).

Equiplet Level

The equiplet level focuses on the reconfigurable manufacturing equipment, the
equiplets. As explained before, the concept of the equiplet is that they are
autonomous, reconfigurable and provide generic services. However, since the
reconfigurable and dynamic aspects also introduce risks it is important that
the equiplets are safe to use. Efficiency is always a factor to be cost-effective.

There are seven Equiplet Function Requirements (EFR). An equiplet should
be able to:

EFR1. Provide a specific ’generic’ service to a product.

EFR2. Be reconfigured (adding or removing of modules - to provide a dif-
ferent service).

EFR3. Work autonomously, i.e. it has no strict dependencies with other
equiplets or does not create interferences for other equiplets.

EFR4. Automatically adapt its control software when modules are added
or removed.

EFR4A. Let its new service (capability) be known to the grid.

EFR4B. Update its system behaviour and safety software.

EFR5. Translate abstract instruction from a product and translate it to
instructions for its own specific hardware modules.

EFR6. Efficiently control the hardware in real-time.

EFR7. Identify and localise, i.e. define the position and orientation of a
priori undefined objects, e.g. parts or products.

EFR1, EFR2, EFR4, and EFR5 are used as input for Chapter 5. The safety
aspect EFR4 is also discussed in Chapter 7. EFR3 and EFR6 for Chapter 6,
and EFR7 is discussed in Chapter 4.

Module Level

The modules are the reconfigurable parts of an equiplet. To be automatically
reconfigurable, or, as it is called in autonomic computing, self-configurable
Computing (2003), it should be known what the characteristics are in such a

way that the equiplet can adapt its properties, be safe, control the module,
and use the module effectively.

There are two Module Functional Requirements (MFR). A module should
be able to:

MFR1. Know its own characteristics.

MFR2. Accept and perform instructions from the equiplet.

MFR1 and MFR2 are both discussed in more detail in Chapter 6, where
several modules are discussed, in Chapter 5 where is discussed how they are
controlled, and Chapter 7 concerning how the characteristics are used for safety
aspects.

Product Representation Entity

There are seven Product Representation Functional Requirements (PFR) dur-
ing the manufacturing phase. Note that the Product entity is the main topic
in the related work of Moergestel (2014) and therefore placed mainly out of
scope for this thesis. However, it is discussed when it interfaces with the man-
ufacturing systems or when the functionality of the product entity needs to
be adapted because of the new insights given in this thesis.

The Product Representation Entity should be able to:

PFR1. Coordinate its own production.

PFR2. Know which parts it requires to be completed.

PFR3. Know which (abstract) services it requires to be assembled (produc-
tion steps).

PFR4. Determine which services are available.

PFR5. Communicate with equiplets to determine if they can perform a pro-
duction step.

PFR6. Create a (viable) schedule on how it will be produced.

PFR7. Log its production/assembly history.

3.4 Fundamental Technologies

Based on the concept and the proposed requirements, two technologies will be
fundamental for the concept of Grid Manufacturing: Agent Technology and
Cyber Physical Systems. These are discussed in the following subsections.



4

Object Awareness |

43 

to perform this, e.g. in the related field of order picking (De Koster et al.,
2007), which could be applied for this cause. Or, more directly connected to
Grid Manufacturing, the work of Moergestel et al. (2015).

Equiplet Level

The equiplet level focuses on the reconfigurable manufacturing equipment, the
equiplets. As explained before, the concept of the equiplet is that they are
autonomous, reconfigurable and provide generic services. However, since the
reconfigurable and dynamic aspects also introduce risks it is important that
the equiplets are safe to use. Efficiency is always a factor to be cost-effective.

There are seven Equiplet Function Requirements (EFR). An equiplet should
be able to:

EFR1. Provide a specific ’generic’ service to a product.

EFR2. Be reconfigured (adding or removing of modules - to provide a dif-
ferent service).

EFR3. Work autonomously, i.e. it has no strict dependencies with other
equiplets or does not create interferences for other equiplets.

EFR4. Automatically adapt its control software when modules are added
or removed.

EFR4A. Let its new service (capability) be known to the grid.

EFR4B. Update its system behaviour and safety software.

EFR5. Translate abstract instruction from a product and translate it to
instructions for its own specific hardware modules.

EFR6. Efficiently control the hardware in real-time.

EFR7. Identify and localise, i.e. define the position and orientation of a
priori undefined objects, e.g. parts or products.

EFR1, EFR2, EFR4, and EFR5 are used as input for Chapter 5. The safety
aspect EFR4 is also discussed in Chapter 7. EFR3 and EFR6 for Chapter 6,
and EFR7 is discussed in Chapter 4.

Module Level

The modules are the reconfigurable parts of an equiplet. To be automatically
reconfigurable, or, as it is called in autonomic computing, self-configurable
Computing (2003), it should be known what the characteristics are in such a

way that the equiplet can adapt its properties, be safe, control the module,
and use the module effectively.

There are two Module Functional Requirements (MFR). A module should
be able to:

MFR1. Know its own characteristics.

MFR2. Accept and perform instructions from the equiplet.

MFR1 and MFR2 are both discussed in more detail in Chapter 6, where
several modules are discussed, in Chapter 5 where is discussed how they are
controlled, and Chapter 7 concerning how the characteristics are used for safety
aspects.

Product Representation Entity

There are seven Product Representation Functional Requirements (PFR) dur-
ing the manufacturing phase. Note that the Product entity is the main topic
in the related work of Moergestel (2014) and therefore placed mainly out of
scope for this thesis. However, it is discussed when it interfaces with the man-
ufacturing systems or when the functionality of the product entity needs to
be adapted because of the new insights given in this thesis.

The Product Representation Entity should be able to:

PFR1. Coordinate its own production.

PFR2. Know which parts it requires to be completed.

PFR3. Know which (abstract) services it requires to be assembled (produc-
tion steps).

PFR4. Determine which services are available.

PFR5. Communicate with equiplets to determine if they can perform a pro-
duction step.

PFR6. Create a (viable) schedule on how it will be produced.

PFR7. Log its production/assembly history.

3.4 Fundamental Technologies

Based on the concept and the proposed requirements, two technologies will be
fundamental for the concept of Grid Manufacturing: Agent Technology and
Cyber Physical Systems. These are discussed in the following subsections.



| Chapter 04 

44 

3.4.1 Agent Technology in Manufacturing

(Paolucci and Sacile, 2005) noted that they can create a flexible, scalable
and reliable production system using agents. Hence, agents fall within the
philosophy of self-managed autonomous systems that is part of the design
philosophy of Grid Manufacturing. (Moergestel, 2014) also uses agents to
represent products. However, the work by van Moergestel mainly focuses
on the product agent and leaves many questions on the perspective of the
manufacturing machines.

Since agents are an important aspect of Grid Manufacturing more detailed
information about agents will be given. We distinguish two types:

1. Reactive agents

2. Reasoning agents

Figure 3.6 shows an example of a standard reactive agent cycle that per-
ceives its environment through sensors, interprets it according to standard
rules, and chooses an action accordingly and acts using actuators to change
something in the environment.

Figure 3.6: Simple reflex of an Intelligent Agent.

Reasoning agents exist in multiple types, the best known of them is the
belief-desire-intention (BDI) agent, see Figure 3.7. The BDI agent uses the
philosophy of (Dennett, 1987) and (Bratman, 1987). The BDI agent uses its
sensors to build a set of beliefs, where its desires are a set of accomplishments
that the agent wants to achieve. The BDI agent can choose desires that it
wants to actively try to achieve; these are its goals. It then commits to a goal

to make it into an intention, activating a plan that consists of actions that it
will take to achieve its goal and thus satisfying its desire. Ideally, a BDI agent
uses the following sequence to achieve this (Rao et al., 1995):

1. initialize-state

2. repeat

(a) options: option-generator(event-queue)

(b) selected-options: deliberate(options)

(c) update-intentions(selected-options)

(d) execute()

(e) get-new-external-events()

(f) drop-unsuccessful-attitudes()

(g) drop-impossible-attitudes()

3. end repeat.

As shown in the sequence the agent adapts its behaviour by actively de-
liberating and updating its intentions based on external events.

BDI-Agent

Sensing Acting
Interpreter

Beliefs

Desires Intentions

Plans

Figure 3.7: Beliefs Desire Intention Agent, adopted from (Wooldridge, 2009).

Figure 3.8 shows the concept of Multi Agent Systems (MAS), where mul-
tiple environments communicate and work within an environment. Agents
interact and can cooperate or negotiate to achieve common goals. Any agent
can have a specific role within a MAS and can interact with the other agents
using specific permissions and responsibilities.

MAS can also be associated with Environment Programming. Envi-
ronment Programming is seen as an abstraction where the environment is seen
from the agent’s perspective. Objects in the environment that the agent in-
teracts with are seen as programming models and are named ’artefacts’. This
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Figure 3.8: Multiple agents forming a Multi Agent System (MAS).

creates an extra abstraction where objects keep their abstraction layer and
can be used effectively by the agents (Ricci et al., 2010).

Since Multi Agent Systems fall right within the specifications and philos-
ophy for Grid Manufacturing they will be used into the design of the Grid
Manufacturing Control Architecture, which will be called: Reconfigurable
EQuipletS Operating System (REXOS where the QS is replaced by an X).

3.4.2 Cyber-Physical Systems

Cyber-Physical Systems are the combination of embedded systems, that use
microsystems, i.e. sensors and actuators that are connected through the in-
ternet of things. An aspect of Cyber-Physical Systems is that the ’cyber-part’
has a model of the physical world that it uses to control the actuators. This
is basically the next step of classic sense-plan-act methodology applied to a
broader range of connected devices.

An important aspect of the REXOS system is the Cyber-Physical aspect.
The concept is directly applied to the REXOS system and also fits in well with
the view of ’agents’. There, every Cyber-Physical entity is represented by an
autonomous agent. Hence, REXOS implements two main agent types:

• The Product Agent - representing the product.

• The Equiplet Agent - representing a reconfigurable manufacturing sys-
tem.

These agents were originally introduced by (van Moergestel et al., 2011),
Van Moergestel focused on the creation and the development of the Product
Agent which has been presented in the PhD thesis (Moergestel, 2014). In his
work, the equiplet agent was primarily used to provide scheduling information

for the equiplets. This thesis will expand on that work, by extending it with
the perspective of the Reconfigurable Manufacturing Systems. The research
will show (1) how to control the hardware, (2) create flexibility and (3) how
to add reconfiguration. This will be discussed in more details in Chapter 5.

3.5 Conclusion

The Concept Chapter demonstrates how this thesis looks at manufacturing;
products and machines are not seen as passive objects, but as autonomous
proactive entities, i.e. Cyber-Physical Systems. The chapter highlights the
ideas behind grid manufacturing and is seen as a more detailed introduction
to the research that will be discussed. It shows the concepts of reconfigurable
manufacturing systems, the equiplets, and introduces agent technology and
the philosophy behind Grid Manufacturing. It also lays the foundation for
the research by providing the functional requirements that would make this
possible. On top of the research questions, the requirements give practical
guidance for the objectives and development of the platform that will form
the basis for the rest of the research.
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will show (1) how to control the hardware, (2) create flexibility and (3) how
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ideas behind grid manufacturing and is seen as a more detailed introduction
to the research that will be discussed. It shows the concepts of reconfigurable
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Object Awareness

Object awareness is one of the aspects of grid manufacturing, or any other
paradigm where objects need to be handled dynamically in an unknown en-
vironment. Object awareness in this context can be seen as the ability of a
machine to be aware of the objects that are within its ’working area’, i.e. the
space wherein the machine can move and/or interact with other objects. This
requires not only to see if an object exists within its working area, but also to
know what the object is and to determine its position and orientation, so that
it is able to interact with it.

In most manufacturing systems the ability to handle parts is commonly
performed by feeder systems or conveyor belts. However, in grid manufac-
turing all systems are dynamic, and the use of standard feeders or belts that
would orientate specific parts to an exact location would limit flexibility. As a
result, it is not known how an object is orientated when it reaches its expected
location.

Grid Manufacturing extends the idea of Cyber-Physical Systems (CPS).
This is done by introducing various smart (self-managed) entities, i.e. agents
(Puik and Moergestel, 2010), that coordinate various processes within the grid.
The agents will be able to autonomously handle processes such as the logistics,
reconfiguration, production. Since these agents have intelligent properties,
they contain information that could be useful for various purposes, and as such
it would be of interest to examine how their knowledge provides opportunities
for the identification and localisation process that is required to handle objects
dynamically.

4.1 Simplifying Object Recognition

4.1.1 Problem Description

Since products and manufacturing equipment are decoupled in design, the
location and positioning of the product and the vision equipment cannot be
known a priori. Hence, it becomes necessary to be able to identify the objects
using real-time sensor data and make use of live configuration data. This
creates a number of complicating factors that need to be mitigated:

1. The hardware configuration can be variable and needs to adapt to the
current machine setup;

2. Any a priori unknown object that enters the grid needs to be recognised;
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3. The machine needs to verify that the product has been scheduled is
actually within its working area;

4. The positioning, i.e. place and orientation of the product in relation to
the machine, needs to be determined in real time.

As an extra complication it is also necessary to determine the objects
position in 6 dimensions, which is called 6D localisation, see figure 4.1.

Figure 4.1: The 6-Dimensional orientation of an object.

Precise measurements are required for the position axis: X, Y, Z, and
the orientation axis: Roll, Pitch, and Yaw, to correctly handle an object.
This task could be performed by stereo or 3D cameras that inspect an object
from multiple angles using computer vision techniques. However, vision is
commonly implemented using custom code that is specifically tailored for a
known object. Hence, it would be preferable to find a more flexible and low-
cost option that handles objects within the working area of a reconfigurable
manufacturing machine.

4.1.2 Requirements

As mentioned in Section 3.3.3, EFR7, the equiplet should be able to identify
and localize, i.e. define the position and orientation of a priori undefined
objects, e.g. parts or products. This chapter will provide a proof of concept
that follows from the problem description and fulfils requirement EFR7. An
object awareness module will be developed for this purpose. For the design
of the module, EFR7 can be decomposed in the following sub Functional
Requirements:

EFR7a to identify which (a priori unknown) objects are within its working
area;

EFR7b to determine the location (in 6D) of the object.

4.1.3 Additional Research Questions

The main question for this chapter, as mentioned in Chapter 2, is: ”RQ1.
How can the detection and localisation of (previously unknown) objects be
simplified and generalised?” Within the context of Grid Manufacturing this
leads to two additional Research Questions which will be discussed in the
current chapter:

RQ1a What data is available and how can the data that both product and
machine contain be effectively combined to help the identification pro-
cess?

RQ1b Can the 6D localisation effectively be performed by 2D camera sys-
tems?

4.1.4 Research Design Parameters

The main Research Design Parameter is that modern distributed systems have
a large amount of (meta)data that could be effectively combined to be used
together with data from cameras to identify and localise objects. This follows
from the following Research Parameters (RP), which in turn follow from the
sub research questions:

RP3a In the concept of Grid Manufacturing both product and the machine
have a distributed Cyber-Physical entity, i.e. an agent, that acts as
a representative of the system. The agent contains a large amount
of data of the system it represents, and as such it is possible to use
the (meta)data dynamically in a running system to predict specific
characteristics and combine knowledge to simplify the identification
and localisation of objects within the working space of a machine.

RP3b When making use of the metadata mentioned in RH1 it should be
possible to combine this with the data of 2D cameras to create a stan-
dardised process to localise an object.

4.1.5 Research Objectives

The objective of the current chapter is to investigate whether it is possible
to create a standardised process that combines knowledge of the different
entities, i.e. products and reconfigurable machines, in real time to simplify
the identification and 6D localisation problem for a priori unknown products.
This will be performed using the following steps:

RO2a Identify the available (meta)data that can be used in relation to en-
hance the vision process.
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RO2b Design a process that uses the (meta)data to identify an object.

RO2c Use the knowledge of the identified object to create a (simple) stan-
dardised localisation process.

RO2d Test the process with verifiable results.

RO2e Determine the precision and practical appliance of the process.

4.1.6 Literature Overview

While there are systems that are known to localise objects with the use of
precise measuring equipment, the challenge is to improve the process using
low-cost, reconfigurable components, in line with the concept of Grid Man-
ufacturing. The concept requires a new generic process that makes use of
the knowledge that exists of the system. This could be done by automati-
cally setting up the vision system which is also able to detect new objects, i.e.
products that were never seen and detected before and have now been added
for production within the grid.

In classic manufacturing systems the orientation problem of objects is com-
monly used by using a feeder system that automatically orientates parts in the
preferred way. (Stappen et al., 2002) shows a number of ways to do this using
a range of sensorless manipulations. However, since this requires the develop-
ment of a specific feeder system per part this is not appropriate for the flexible
approach required in Grid Manufacturing. Hence, the focus should be on more
dynamic approaches that do use sensors to localise and manipulate an object.

Flynn and Jain (1989) directly uses CAD based models to match objects.
However, their approach focuses on performing geometric inferencing to obtain
a relational graph representation of the object. The representation is then
stored in a database and used for object recognition. However, this way the
recognition is only effective for matching between a set of objects, but does
not solve the 6D localisation problem.

Azad et al. (2007) uses a different approach; in this paper a stereo vision
camera is used for 6D object localisation in order to grasp objects with a robot.
The approach currently seems limited to cylindrical, textured objects. The
system detects highly textured points, calculates the 2D contour, then uses
the stereo vision to calculate a 3D point and fits it into a 3D plane. By using
a 6D pose the object is then placed into the world coordinate system. In this
paper the model is generated manually, while it does make some interesting
points, it does not make use of possible meta-information. The work is more
focused on determining the shapes of objects to be picked up. Using meta-
information would simplify the problem, making it more robust and easier to
implement.

Lowe (1987) shows a general framework for visual recognition. It uses 2D
images to recognise 3D objects without the use of depth information. This
also uses the 3D object models to verify the image features and makes use of
prior knowledge of objects.

Kallmann and Thalmann (1999) focuses on interaction between (virtual
human) agents and objects. The paper makes use of the ’smart object’ concept.
A smart object is a modelled object that has its own interactive features. These
possible interactions are stored in the object as well. This is remotely similar
to the ’agent’ approach of Grid Manufacturing. However, in contrast to a
smart object, an agent will also initiate (proactive) action based on its own
behaviours.

4.2 Metadata in the Grid

The main idea of on the concept is that two main agents can be expected
to hold data that could be useful for the vision process. The two agents are
the equiplet agent and the product agent. The equiplet should have precise
knowledge of its configuration. This includes a Computer-Aided Design (CAD)
model of itself with a precise position of its working area. In line with the
Cyber-Physical way of thinking, the product agent should also have a model
of its own design. At this moment three kinds of metadata is identified to be
of interest:

• Position of the Working area.

• CAD Model of the product.

• Position of the camera(s).

A standard equiplet is usually configured with a ’workplane’, see figure 4.2.
The workplane is a flat surface on which an object that needs to be handled

is positioned. Hence, it can be assumed that all objects that need to be handled
by an equiplet are placed on top of the workplane or on a tray that is positioned
on the workplane. This provides specific information about the position in the
Z axis of the object. An object in rest always has a limited set of possibilities
for its orientation. This is made clear in Figure 4.3.

This object is currently not stable on a flat plane and will have only 2
possibilities for the pitch and yaw dimensions. Knowing this greatly simplifies
the localisation process.

The localisation data together with the model of the product can also
determine where it could be handled, i.e. gripped to be moved. The second
aspect of the localisation process is how the images of the vision cameras can
be mapped in relation to the machine. The combination of the position of
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recognition is only effective for matching between a set of objects, but does
not solve the 6D localisation problem.

Azad et al. (2007) uses a different approach; in this paper a stereo vision
camera is used for 6D object localisation in order to grasp objects with a robot.
The approach currently seems limited to cylindrical, textured objects. The
system detects highly textured points, calculates the 2D contour, then uses
the stereo vision to calculate a 3D point and fits it into a 3D plane. By using
a 6D pose the object is then placed into the world coordinate system. In this
paper the model is generated manually, while it does make some interesting
points, it does not make use of possible meta-information. The work is more
focused on determining the shapes of objects to be picked up. Using meta-
information would simplify the problem, making it more robust and easier to
implement.

Lowe (1987) shows a general framework for visual recognition. It uses 2D
images to recognise 3D objects without the use of depth information. This
also uses the 3D object models to verify the image features and makes use of
prior knowledge of objects.

Kallmann and Thalmann (1999) focuses on interaction between (virtual
human) agents and objects. The paper makes use of the ’smart object’ concept.
A smart object is a modelled object that has its own interactive features. These
possible interactions are stored in the object as well. This is remotely similar
to the ’agent’ approach of Grid Manufacturing. However, in contrast to a
smart object, an agent will also initiate (proactive) action based on its own
behaviours.

4.2 Metadata in the Grid

The main idea of on the concept is that two main agents can be expected
to hold data that could be useful for the vision process. The two agents are
the equiplet agent and the product agent. The equiplet should have precise
knowledge of its configuration. This includes a Computer-Aided Design (CAD)
model of itself with a precise position of its working area. In line with the
Cyber-Physical way of thinking, the product agent should also have a model
of its own design. At this moment three kinds of metadata is identified to be
of interest:

• Position of the Working area.

• CAD Model of the product.

• Position of the camera(s).

A standard equiplet is usually configured with a ’workplane’, see figure 4.2.
The workplane is a flat surface on which an object that needs to be handled

is positioned. Hence, it can be assumed that all objects that need to be handled
by an equiplet are placed on top of the workplane or on a tray that is positioned
on the workplane. This provides specific information about the position in the
Z axis of the object. An object in rest always has a limited set of possibilities
for its orientation. This is made clear in Figure 4.3.

This object is currently not stable on a flat plane and will have only 2
possibilities for the pitch and yaw dimensions. Knowing this greatly simplifies
the localisation process.

The localisation data together with the model of the product can also
determine where it could be handled, i.e. gripped to be moved. The second
aspect of the localisation process is how the images of the vision cameras can
be mapped in relation to the machine. The combination of the position of
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Figure 4.2: The Workplane on a manufacturing machine (in this case a 3D
printing module on a standard equiplet frame).

Figure 4.3: Impossible (unstable) angle of an object.

the camera, the possible position of the object, and the object model gives
a large amount of information, which can be used for the identification and
localisation process.

4.3 Proposal - Generic Method

The metadata and design parameters lead to a proposed generic method, de-
signed for use when both the 3D product model and sufficient metadata (like
camera positions) are available. The method can be performed using two or
more 2D cameras for 6D localisation of an object. The generic method is
shown in Figure 4.4.
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rests on a flat surface

Determine X, Y, Z position of 
the object based on shape 

matching

Camera Position 2

Set of Object Models

Create set of 2D images from 
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Specific object is now known

X, Y, Z are now known

A set of images, based on the knowledge of camera perspectives, x,y,z,rotation information of the specific object
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Figure 4.4: The 6D detection using metadata in multiple steps.

The image shows all conceptual steps and the data that is used and gener-
ated to come to the recognition and localisation of an object. The first step is
where the models of the objects that could be present are given. These models
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Figure 4.2: The Workplane on a manufacturing machine (in this case a 3D
printing module on a standard equiplet frame).

Figure 4.3: Impossible (unstable) angle of an object.
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are analysed to determine how they can be positioned on a flat surface. The
analysis creates a number of possibilities that are put into a set, showing the
object with the possible roll, pitch and yaw positions. This information is
fed to the second system. The second system uses live data that holds the
configuration of a live system, including the workplane and camera positions.
The data is used to create a set of 2D images that emulates the camera’s view
by using a simulation that places the model in the possible positions on the
workplane from the perspective of the camera. The images are used in the
real ’runtime’ machine vision process when the object reaches the machine.
Object matching with the top camera confirms which object is at the ma-
chine and determines the X and Y positions and infers the Z position using
the workplane location. However, the matching process needs to be repeated,
since one 2D camera cannot precisely determine the roll, pitch, and yaw of
the object. Therefore the steps are repeated using another set of simulated
2D images made from the perspective of a camera from another angle. This
leads to a precise measurement of all 6 dimensions.

The method could be used for all kinds of object recognition and localisa-
tion so long as (1) the object is in rest on a known flat surface, (2) the object
model is available, and (3) if there are 2 or more cameras with different per-
spectives. Precision is based on the camera perspectives, resolution, lighting
and model accuracy.

4.4 Design

To create the proposed generic vision method, number of systems need to be
designed.

4.4.1 Requirement decomposition

This subsection will give a further decomposition of the Equiplet Functional
Requirement 7 (EFR7), as mentioned in Chapter 3, and its two sub-requirements
mentioned at the beginning of this chapter. These are split into two different
systems, the tool and vision system, which will have the following functional-
ities:

Tool

• to parse to STL vertices from a CAD model file.

• to define one or more camera positions and orientations of the cameras.

• to simulate the workplane position.

• to render a 3D object based on vertices.

• to generate (2D) images based on the defined camera positions and ori-
entations.

• to perform basic image processing routines on the images for vision pur-
poses, e.g. grey-scaling.

• to save images in a set for later use.

Vision

• to identify objects

• to accurately define the 6D position of an object.

4.5 Implementation

Given these functionalities, a decomposition can be made for the actual im-
plementation. The following four modules were developed:

1. The preprocess - which determines which orientation an object can have.

2. The modelling tool - which generates 2D images from a model based on
the camera perspective

3. The vision module - which recognises the real objects by using feature
detection

4. The 6D process - which uses the images to determine the 6D positions

This leads to the use of the following modules that were developed, see
Figure 4.5.

Several steps in the process can be combined into different sub modules,
which can be used in a generic manner. This makes the software more modular
and reusable for diverse purposes.

The implementation is based on the original design and specific non-
functional requirements, which are mostly technical or practical criteria, but
do have an impact on the choices. For the implementation three non-functional
requirements are added to the requirements:

• The entire process should be performed within several seconds to be able
to be used in an automated manufacturing process.

• The software should be able to run on a multi-platform environment.
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4.5 Implementation

Given these functionalities, a decomposition can be made for the actual im-
plementation. The following four modules were developed:

1. The preprocess - which determines which orientation an object can have.

2. The modelling tool - which generates 2D images from a model based on
the camera perspective

3. The vision module - which recognises the real objects by using feature
detection

4. The 6D process - which uses the images to determine the 6D positions

This leads to the use of the following modules that were developed, see
Figure 4.5.

Several steps in the process can be combined into different sub modules,
which can be used in a generic manner. This makes the software more modular
and reusable for diverse purposes.

The implementation is based on the original design and specific non-
functional requirements, which are mostly technical or practical criteria, but
do have an impact on the choices. For the implementation three non-functional
requirements are added to the requirements:

• The entire process should be performed within several seconds to be able
to be used in an automated manufacturing process.

• The software should be able to run on a multi-platform environment.
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Figure 4.5: System decomposition for the 6D object recognition and localisa-
tion process.

• The models should be able to handle the Standard Tessellation Language
(STL) model format (which is commonly used by industry)

These technical cases led to the code being developed in C++, using the
QT framework. Also the product models use the STL format, which is based
on vertices, see Figure 4.6

Since an object is described in vertices it is more efficient to store in a
binary format. Also, STL files are often used for prototyping and additive
manufacturing purposes. The next step is to define the implementation of the
required software modules.

Figure 4.6: An object model based on the STL format is all made up of
vertices.

4.5.1 Preprocess

For the first step a pre-process software module should be implemented that
analyses the 3D model to determine the possible orientations that can be used
to create an image for all possible orientations of the object on a flat surface.
This has been designed and is shown in Figure 4.7.

The preprocess uses the model and places it in all possible orientations
where it is at rest. The model is visualised in a framebuffer where an image
is saved for every possible orientation. During the design phase the possible
orientations were already known, since they were given as metadata belonging
in the object. However, the process of determining the possible stable orien-
tation on a flat surface could also be automated by analysing the model. In
future work this analysis could be achieved by calculating the centre of mass
and surfaces to define all possible orientations of an object.

4.5.2 Modelling Tool

The second step is the design of the modelling tool. This tool will be able
to generate 2D images from the perspective of the camera for all possible
positions of the part lying on a known surface (the workplane). A number of
actions can be taken through the GUI, see Figure 4.8 including changing the
position of one or more cameras, changing the workplane and adding different
STL objects. The tool will then create a view from the camera perspective
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Figure 4.5: System decomposition for the 6D object recognition and localisa-
tion process.

• The models should be able to handle the Standard Tessellation Language
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Since an object is described in vertices it is more efficient to store in a
binary format. Also, STL files are often used for prototyping and additive
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analyses the 3D model to determine the possible orientations that can be used
to create an image for all possible orientations of the object on a flat surface.
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The preprocess uses the model and places it in all possible orientations
where it is at rest. The model is visualised in a framebuffer where an image
is saved for every possible orientation. During the design phase the possible
orientations were already known, since they were given as metadata belonging
in the object. However, the process of determining the possible stable orien-
tation on a flat surface could also be automated by analysing the model. In
future work this analysis could be achieved by calculating the centre of mass
and surfaces to define all possible orientations of an object.

4.5.2 Modelling Tool

The second step is the design of the modelling tool. This tool will be able
to generate 2D images from the perspective of the camera for all possible
positions of the part lying on a known surface (the workplane). A number of
actions can be taken through the GUI, see Figure 4.8 including changing the
position of one or more cameras, changing the workplane and adding different
STL objects. The tool will then create a view from the camera perspective
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Figure 4.7: Preprocess that creates a dataset for the vision system by using
the possible orientations of a model at rest on a flat surface.

and use the OpenGL framework1 to render it. The tool uses this to grab an
image and save it to file. By repeating the process for all possible options that
the preprocess defined, an entire set of images is produced that can be used
for the vision and 6D localisation process.

While the tool provides ways to manually produce the images it must also
be able to run without user input. This makes it possible to automate the
process to create images for the 6D localisation process on demand. Hence,
Figure 4.9 shows the activity diagram for the tool without the use of a GUI.
The tool can be used by the command line and directly called from another
process.

1https://www.opengl.org/ - last accessed 29-04-2016

Figure 4.8: The model (STL) tool with GUI, here you see the rendering of an
object based on manual positions input.

Figure 4.9: Activity diagram for the modelling tool without GUI.

4.5.3 Vision Module

The vision module must be able to perform standard image processing routines
and feature detection to recognise the object. Image processing is required
to adapt to specific lighting conditions. Including removal of noise, threshold
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Figure 4.7: Preprocess that creates a dataset for the vision system by using
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Figure 4.9 shows the activity diagram for the tool without the use of a GUI.
The tool can be used by the command line and directly called from another
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Figure 4.8: The model (STL) tool with GUI, here you see the rendering of an
object based on manual positions input.

Figure 4.9: Activity diagram for the modelling tool without GUI.

4.5.3 Vision Module

The vision module must be able to perform standard image processing routines
and feature detection to recognise the object. Image processing is required
to adapt to specific lighting conditions. Including removal of noise, threshold
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that adapts the lighting levels and clipping algorithms that can distinguish the
difference between objects and the background. These are standard routines
that can be used from any number of vision libraries.

Since a limited of set of objects, and a detailed set of images are now
available with the correct ’live’ perspectives it is now easy to implement the
vision modules. Five standard features are implemented:

• Width.

• Height.

• Aspect Ratio - The relation between the Width and Height.

• Number of Holes - Amount of holes that can be identified by identifying
connected parts of background within the objects boundaries.

• Area - The total surface area of the object.

These five features can be implemented straight forwardly and used to
match the 2D images with the real image. However, in this case these are
sufficient, since the image set is limited to the specific possible objects and
positions that are given by actual product agents that have been scheduled at
that time.

Figure 4.10 shows the steps of the computer vision process. The image
taken from the camera is first adapted to the current lighting using threshold-
ing algorithms, then different objects within the image are detected, possibly
combined when they are connected, and filtered out. Multiple objects can be
within the image and are checked one by one. Each object is analysed on spe-
cific features (which can be extended when necessary). Finally the results of
the feature detection are stored and compared with the set of possible images.
Thereafter the results are matched with the model to establish which object
has been detected.

Figure 4.11 shows an example of the matching process with a specific part.

Figure 4.10: Matching the object using feature detection with Computer Vi-
sion.

Figure 4.11: Extracting objects.

As shown in the figure, the part is lying on a tray, and the step from input
to thresholding shows the result of the thresholding process; effectively taking
away the background and exposing the object. In the image, only one object
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is found during the finding components process. Then the component is cut
out to be used for the feature matching with a set of known objects.

After the feature matching process the 6D process is started that needs to
define the locations.

4.5.4 6D Process

Based on the requirements the tool for the 6D process is implemented; the
process is shown in Figure 4.12.

Figure 4.12: 6D localisation process.

The 6D process uses the images and positions of the feature, to determine
the positions of the object. At this point the object and all possible orienta-
tions are already known. The process starts with filtering the object out of the
image, after which the X and Y positions can be determined. The next step
is to determine the correct yaw (rotation). The determination is performed
by comparing the real image with the test set, which uses a template image.

The process also determines the roll and pitch positions by comparing the
templated image set with the real image. When a match is found the steps
are repeated with the perspective of the horizontally placed (2nd) camera. If
multiple high matches are found, they are checked by comparing the results
with the other orientation matches. So, the results can be verified, since the
yaw and pitch orientations need to match to have an (unbroken) symmetrical
model. After the best match is found, the process determines the complete
location of the object in all 6 dimensions.

4.6 Proof of concept: Floe

The process has been tested using a number of product parts. One of them is
a specific object called a ’floe’. A floe is a part of an electrical shaver. We take
the ’floes’ as an example to illustrate the whole process. A floe is an object
that is created either using 3D printing or injection moulding. The object
is made of 1 to 3 rings connected to a carrier. This object is particularly
challenging since at times it can be positioned in an unexpected way. Figure
4.13 shows the floe, both in a correct and incorrect positioning.

Figure 4.13: The need for 6D localisation when a floe has been positioned in
the wrong way.

The problem is that from a top view camera it can be difficult to distinguish
the positioning of a floe to see whether it is placed correctly or incorrectly.
So while this object is actually on a tray that fixes its position, it still needs
to be checked in 6D to be sure that it can be handled. Hence, an equiplet
was configured with 2 simple, i.e. low-cost and low-resolution, 2D industrial
cameras that view the workplane from different angles. Figure 4.14 shows the
test set-up for the test. The equiplet is also configured with a LED ring for
lighting, and a workplane.

The test makes use of the 3D tool and 6D process to determine which
flow is used and what its position is. The yaw is determined by turning the
template image 1 degree at a time until the highest match has been found.
After that the roll and pitch are determined, based on possible positions that
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The problem is that from a top view camera it can be difficult to distinguish
the positioning of a floe to see whether it is placed correctly or incorrectly.
So while this object is actually on a tray that fixes its position, it still needs
to be checked in 6D to be sure that it can be handled. Hence, an equiplet
was configured with 2 simple, i.e. low-cost and low-resolution, 2D industrial
cameras that view the workplane from different angles. Figure 4.14 shows the
test set-up for the test. The equiplet is also configured with a LED ring for
lighting, and a workplane.

The test makes use of the 3D tool and 6D process to determine which
flow is used and what its position is. The yaw is determined by turning the
template image 1 degree at a time until the highest match has been found.
After that the roll and pitch are determined, based on possible positions that
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Figure 4.14: An equiplet setup with 2 cameras from different perspectives.

are known by the product agent.

Figure 4.15 shows an example with the floe, with in the left image the real
image and the right the precise match of an image with the modelled image.

Figure 4.15: The tool generated image matches the real object.

In the test, three types of floes with either 1, 2 or 3 connected rings were
put in different positions. Either tilted, i.e. wrongly put in the tray and put
in different positions within the workplane of the equiplet test setup. Table
4.1 shows the results.

The test demonstrates that two cameras can effectively determine the 6-
Dimensional positions of an object. Match percentages are between 80 and
97% and thus high. In this case, all tests ran correctly and gave precise

Table 4.1: Test results, based on the floe test case. # = Test-number, P =
Positioning, Type = Part-type, X, Y, Z = X, Y, Z in pixel coordinates, R, P,
Y are Roll, Pitch, Yaw in degrees, RP% = Roll/Pitch image match in %, Y%
= Yaw match in %, Time = non-optimised execution time in s.
# Pos. Type X Ys Z R P Y RP% Y% Time
1 Flat Floe1 371 276 229 0 0 324 98 82 1.138
2 Flat Floe1 339 235 230 15 0 90 83 97 1.133
3 Flat Floe1 309 268 228 0 0 188 93 97 1.090
1 Tilted Floe1 326 255 214 15 0 198 94 91 1.136
2 Tilted Floe1 333 241 210 15 0 88 92 89 1.141
3 Tilted Floe1 379 238 212 15 0 18 85 87 1.128
1 Flat Floe2 326 259 225 0 0 332 86 87 1.187
2 Flat Floe2 312 265 223 0 0 264 83 94 1.200
3 Flat Floe2 351 253 229 0 0 98 90 97 1.162
1 Tilted Floe2 353 247 208 11 19 98 94 87 1.190
2 Tilted Floe2 334 239 208 11 19 172 96 80 1.236
3 Tilted Floe2 328 269 209 11 19 288 96 85 1.179
1 Flat Floe3 330 262 230 0 0 322 86 97 0.584
2 Flat Floe3 343 254 232 0 0 166 81 98 0.596
3 Flat Floe3 343 254 231 0 0 88 87 96 0.596
1 Tilted Floe3 343 262 185 11 19 84 91 84 0.597
2 Tilted Floe3 326 259 180 11 19 208 89 87 0.596
3 Tilted Floe3 334 279 197 11 19 348 92 82 0.568
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Figure 4.14: An equiplet setup with 2 cameras from different perspectives.

are known by the product agent.

Figure 4.15 shows an example with the floe, with in the left image the real
image and the right the precise match of an image with the modelled image.

Figure 4.15: The tool generated image matches the real object.

In the test, three types of floes with either 1, 2 or 3 connected rings were
put in different positions. Either tilted, i.e. wrongly put in the tray and put
in different positions within the workplane of the equiplet test setup. Table
4.1 shows the results.

The test demonstrates that two cameras can effectively determine the 6-
Dimensional positions of an object. Match percentages are between 80 and
97% and thus high. In this case, all tests ran correctly and gave precise

Table 4.1: Test results, based on the floe test case. # = Test-number, P =
Positioning, Type = Part-type, X, Y, Z = X, Y, Z in pixel coordinates, R, P,
Y are Roll, Pitch, Yaw in degrees, RP% = Roll/Pitch image match in %, Y%
= Yaw match in %, Time = non-optimised execution time in s.
# Pos. Type X Ys Z R P Y RP% Y% Time
1 Flat Floe1 371 276 229 0 0 324 98 82 1.138
2 Flat Floe1 339 235 230 15 0 90 83 97 1.133
3 Flat Floe1 309 268 228 0 0 188 93 97 1.090
1 Tilted Floe1 326 255 214 15 0 198 94 91 1.136
2 Tilted Floe1 333 241 210 15 0 88 92 89 1.141
3 Tilted Floe1 379 238 212 15 0 18 85 87 1.128
1 Flat Floe2 326 259 225 0 0 332 86 87 1.187
2 Flat Floe2 312 265 223 0 0 264 83 94 1.200
3 Flat Floe2 351 253 229 0 0 98 90 97 1.162
1 Tilted Floe2 353 247 208 11 19 98 94 87 1.190
2 Tilted Floe2 334 239 208 11 19 172 96 80 1.236
3 Tilted Floe2 328 269 209 11 19 288 96 85 1.179
1 Flat Floe3 330 262 230 0 0 322 86 97 0.584
2 Flat Floe3 343 254 232 0 0 166 81 98 0.596
3 Flat Floe3 343 254 231 0 0 88 87 96 0.596
1 Tilted Floe3 343 262 185 11 19 84 91 84 0.597
2 Tilted Floe3 326 259 180 11 19 208 89 87 0.596
3 Tilted Floe3 334 279 197 11 19 348 92 82 0.568
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matches of the object. Execution time was also quite high, with a maximum
around 1.2 seconds. However, currently no optimisations were used and this
could likely be optimised in the future.

4.6.1 Accuracy

Currently the most important limitation is that the object needs to be de-
tected correctly. As long as this happens the theoretical accuracy of the 6D
localisation is 1 pixel on the Z, X, Y positions, and 1 degree on the Pitch,
Yaw, and Roll angles. However, the accuracy is purely based on two variables
that could easily be adapted. Mainly the resolution of the cameras, and the
size of the test set for the pitch, yaw, and roll angles. As such the x, y, z
accuracy can be increased by either using subpixel detection (Rockett, 1999)
or increasing the camera resolution. For the current case a set of 180 images
per dimension was used for the angles. This means that each image has a
2 degree offset with the next. Hence, when matched correctly the acccuracy
should fall within 1 degree. By increasing the test set with a smaller degree
offset, the theoretical precision could be increased. Of course, these accuracies
are under the assumption that the camera’s position is exactly known, and
lens correction has been performed accurately.

4.6.2 Limitations

An important limitation is that the CAD models should be accurate, and that
objects should not touch each other, as otherwise they will not be seen as
separate objects and will not be detected. A risk that can also occur is that
shadows from one object cannot be distinguished from the object (or other
objects) itself. A similar problem is when not sufficient contrast is available
between objects, or between the object and the background. As such, good
lighting from all directions is important. However, in common implementa-
tions these limitations should be easily mitigated. Designing objects using
CAD models has become more mainstream, and using a LED ring or other
lighting can be easily set up when using reconfigurable machines.

4.7 Discussion

The current chapter shows a method that is both simple to use and flexible.
The process makes use of the modelling (STL) tool and some simple, but
effective processes to detect and localise objects in 6D. What makes the process
unique is the use of the knowledge of the object and the configuration of the
machine itself. This creates a flexible and dynamic approach that can be
applied in diverse settings.

Some aspects can still be improved. For example the current implementa-
tion is based on the knowledge in the object of how it can rest on a flat surface
or tray. While this ’stable position’ information might be easily added to a
product agent, it might also be straight forward to be determined automati-
cally. This could be achieved by analysing the surfaces and centre of mass of
the object.

The current method is very effective, since the set of objects that need to
be recognised is always limited, as an equiplet agent will always be able to
determine by communicating with the product agents nearby which objects
are currently within range. However, if applied in different situations this
information might not be available. In such a situation, a larger database
needs to be queried. The use of a large object database could result in high
match rates for different objects, since there are more small differences and
more models that need to be matched against the current objects. The risk of
confusion between parts could be mitigated by adding different features that
are validated, making the matching process more specific for different objects.
However, for the current test cases a limited amount of simple features proved
robust and effective enough against the tested objects, even when extending
the set with more and different objects.

4.8 Conclusion

Below the two sub research questions RQ1a and RQ2b will be discussed: First,
RQ1a is restated: What data is available and how can the data, that both
product and machine contain be effectively combined to help the identification
process? The most important data that needs to be available for the approach
is (1) the product model, (2) its possible stable orientations on a flat surface,
and (3) the camera positions in relation to the workplane (or any other known
flat surface or tray on which the object lies). This data makes it possible to
use a straight forward implementation approach and use two 2D cameras to
identify and precisely localise the object.

Then to restate RQ1b: Can the 6D localisation effectively be performed by
2D camera systems? When the meta data is available and other limitations
are taken into account it is effective to use this method. The method is also
simple to adapt. The STL tool can adapt the images for different camera
positions and models of different objects can be added in real-time. While this
chapter only specifically discusses one proof of concept using a typical product
part, the process has been experimented with on different configurations and
products with similar results. Hence, we are confident that the system is quite
flexible in use and can be applied in different situations.

The two answers brings us to the main research question for the current
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matches of the object. Execution time was also quite high, with a maximum
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machine itself. This creates a flexible and dynamic approach that can be
applied in diverse settings.
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tion is based on the knowledge in the object of how it can rest on a flat surface
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needs to be queried. The use of a large object database could result in high
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confusion between parts could be mitigated by adding different features that
are validated, making the matching process more specific for different objects.
However, for the current test cases a limited amount of simple features proved
robust and effective enough against the tested objects, even when extending
the set with more and different objects.

4.8 Conclusion

Below the two sub research questions RQ1a and RQ2b will be discussed: First,
RQ1a is restated: What data is available and how can the data, that both
product and machine contain be effectively combined to help the identification
process? The most important data that needs to be available for the approach
is (1) the product model, (2) its possible stable orientations on a flat surface,
and (3) the camera positions in relation to the workplane (or any other known
flat surface or tray on which the object lies). This data makes it possible to
use a straight forward implementation approach and use two 2D cameras to
identify and precisely localise the object.

Then to restate RQ1b: Can the 6D localisation effectively be performed by
2D camera systems? When the meta data is available and other limitations
are taken into account it is effective to use this method. The method is also
simple to adapt. The STL tool can adapt the images for different camera
positions and models of different objects can be added in real-time. While this
chapter only specifically discusses one proof of concept using a typical product
part, the process has been experimented with on different configurations and
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flexible in use and can be applied in different situations.

The two answers brings us to the main research question for the current
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chapter: RQ1. How can the detection and localisation of (previously unknown)
objects be simplified and generalised? This can be done by (1) making use
of the knowledge of different entities within the system, (2) combining that
information and (3) creating a tool that it can use to dynamically compose
the required images to match these against the real world. Here you can see
the Cyber-Physical aspect again, where the virtual ’Cyber’ world and the real
physical world work closely together to create a straight forward solution to a
practical problem that is commonly quite difficult to solve.

In general, the conclusion is that the generic method for 6D localisation
is effective, as shown in the results the vision system was able to identify
the correct object and provide sufficient precision (within 1 degree or pixel)
for the equiplet to handle the part. It is a good example of Cyber-Physical
Systems working together and simplifying a problem such an object detection
and localisation. The use of the models and the communication between the
equiplet and product make this approach possible, increasing flexibility and
solving the problem of object awareness in a changing environment.
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“I suppose it is tempting, 
if the only tool you have 
is a hammer, to treat 
everything as if it were a 
nail.”

― Abraham H. Maslow
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Reconfiguration

Chapter 3 proposed the concept for Grid Manufacturing. The concept of Grid
Manufacturing is based on the idea of autonomous entities that cooperate
for maximum flexibility. However, it does not yet describe the means of how
this was achieved. Hence, the current chapter will describe one of the most
important aspects of the study: reconfiguration. Reconfiguration in this sense
is not only the ability to change the ’configuration’, i.e. changing the hardware
modules, but more specifically the ways it adapts its software and the ability
to be able to use it. The ’agility’ that is created with these aspects has to be
made by software.

Equiplets are reconfigured by changing the hardware modules. From the
viewpoint of autonomic computing, this falls within the category of self-
configuration (Computing, 2003). The equiplet can use its reconfiguration
behaviour to change its services. Modules, like grippers, parallel manipu-
lators, and camera systems can be changed to offer new capabilities to the
machine and therewith new services to the products. However, changing a
module has a number of effects:

• It affects how it can interact with a product, i.e. the product knows
which services it needs, but the product is not aware of how to control
hardware directly and therefore cannot control the hardware itself.

• It affects how the equiplet is controlled, i.e. each module has its unique
interfaces and micro-systems that need to be controlled.

• It changes the service and capability of an equiplet, i.e. what it can do
and with which limitations.

These problems have to be resolved to be able to quickly adapt the manu-
facturing systems to new product demand. If the manufacturing system works
autonomously and offers a generic service they would be able to be changed on
demand at any time without interfering with the other manufacturing systems.
This would create flexibility to add, remove, and change services & abilities
at any time. Simplifying the reconfiguration process could also lead to three
opportunities:

1. When there is sufficient redundancy in the grid, systems with a low
utilisation could be reconfigured to provide a service that is currently
high in demand to improve overall efficiency.
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2. A system could temporarily be reconfigured with new hardware to ex-
periment with new services that a (prototype) product requires, i.e. real
’live’ production grids could be used for automated product prototyping,
which will likely be useful to find problems in the manufacturing process
early in the product development phase.

3. Updating or repairing hardware can be performed with limited or no
impact to the grid in general.

To be able to utilise these opportunities the following problems have to be
solved.

5.1 Problem Description

One of the main requirements for reconfiguration is that it should be simple,
fast, and not limit the flexibility. Hence, it should be possible to reconfigure
a system without the need to program and build new software to let it per-
form its service. Reprogramming would limit the ability to change the system
on demand and as such would inhibit the ability of the system to automati-
cally manufacture new custom products. Reconfiguration introduces a related
problem: a product is not aware of which manufacturing system will produce
it. Scheduling takes place dynamically, based on the demand and supply of
the services that the product requires and which the manufacturing systems
supply. Services are designed to be standardised and as generic as possible
in such a way that as many as possible products can use them. As a result,
both product and the manufacturing system are not designed specifically for
each other. Hence, to be able to use the service for a product they should be
able to interface and understand each other. This asks for an ontology that
both product and manufacturing system can use. The architecture should
take into account which services and limits it can provide and match these to
the requirements of the product.

5.2 Additional Research Questions

The main question for the chapter is: RQ2 Can reconfigurable manufacturing
systems be controlled without the need to reprogram them for every new product
or hardware module? The main question for this chapter is split into three
additional sub-questions:

RQ2a How can the product use the machines when it has no knowledge of
the manufacturing system or its (hardware) configuration?

RQ2b How does the machine know which services it can provide after it has
been reconfigured?

RQ2c How can the machine control its (changing) hardware modules?

5.3 Literature Overview

Van Moergestel first introduced the idea of Product Agents that use ’Product
Steps’ to describe the necessary actions that a product has to take to be
manufactured (Moergestel et al., 2013b). However, in his research the product
steps were described in detail and as such the manufacturing systems could
always directly complete them. In other words, the product was created by
a limited and standardised set of steps that were well-defined and known by
both product and machines. The manufacturing machines were only capable
of directly performing these steps. Hence, the system is limited by these steps
and should be reprogrammed if new steps are added or the configuration is
changed. Therefore, another system is required that gives more flexibility. The
goal is to create a way that products can immediately use new configurations or
services that become available without the need for taking the manufacturing
system offline for a longer period of time to change its programming.

Basically what is required for reconfiguration without reprogramming to
work is for different unknown systems to interact. Interaction or handling of
objects is also a matter of research for game and simulation systems, which
often speak of smart objects. Kallmann and Thalmann propose a framework
that handles many possible interactions between virtual humans and the en-
vironment (Kallmann and Thalmann, 1999). However, while in this approach
humans do learn to utilise the objects by reasoning, it only searches for suitable
behaviours that fit the smart object.

Gibson introduced the concept of Affordances, which shows a relation be-
tween an object and an organism, i.e. it shows the possibility of an action
(Gibson, 1977). An example of Afforances is the handle of a bag, which clearly
provides the affordance to carry it above the ground. While Gibson applied
this to organisms in natural environments the notion of affordances has been
spread in various fields, including robotics. From the theory of affordances, ac-
tions that can be performed should not be perceived as properties of a system,
but more as a possibility of which an actor becomes aware.

From a more specific technical perspective there are several studies of inter-
est. The literature provides a number of distributed production systems that
use agent technology. However, most of these are used in the context of distri-
bution of resources (Barata et al., 2008; Khalgui and Mosbahi, 2010; Cho and
Prabhu, 2007; Trentesaux, 2009; Wang et al., 2009). Barata for example uses
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a true reconfigurable system. However, this system is still controlled by a cen-
tral hierarchical control system and is therefore not as flexible or distributed in
the meaning that all systems work autonomously (Barata et al., 2008). Wang
similarly uses distributed real-time information to create a centralised cyber
workspace that is still centrally controlled (Wang et al., 2009).

Trentesaux looked into distributed control systems and even distinguishes
three classes: Class 1: Centralised, Class 2: Semi-hierarchical, Class 3: het-
erarchical (all systems are equal). Based on his classification the grid manu-
facturing concept will be a true Class 3 system, where all products and man-
ufacturing systems will be equal and cooperative in the heterarchical sense.

Based on the related work it is presumed that there is still need for a
system that is both truly distributed, and in that sense, heterarchical i.e all
systems are equal and autonomous, and reconfigurable. Hence, we introduce a
system that falls more in line with Grid Manufacturing by introducing a new
concept.

5.4 The Concept of Product Step Translations

The objectives for reconfiguration are based on the specifications as men-
tioned in Chapter 3 Concept. The most important requirement is that no
system needs to be reprogrammed when it is reconfigured or a new product
is designed. Also, products are not specifically designed for the manufactur-
ing hardware. Hence, there needs to be a translation from the basic product
step that the product uses to describe its manufacturing process, towards the
instructions that the hardware will need to be able to perform those steps. In
classic manufacturing, all parts and manufacturing steps had to be explicitly
defined to be able to automatically produce a product. Customisation and
replacement of parts were handled before the manufacturing phase. However,
with the approach of grid manufacturing, a product can be manufactured dy-
namically. Hence, there is the possibility to use product customisation in any
phase of the manufacturing process. This opens the door to product abstrac-
tion, which is seen as an explicit abstraction in the product manufacturing
design. With product abstraction, parts of the manufacturing process can
be interpreted by the grid on demand. For example, different manufacturing
hardware might be capable of performing a similar service. In some cases
product abstraction can even be taken further, e.g. from the design perspec-
tive, if a colour has not been chosen for the product, the grid itself can choose
to produce the product with any colour based on parameters, like cost or
availability of specific equipment.

Based on the concept of product (manufacturing) abstraction, a vision
emerges where the manufacturing process begins from a high abstraction and is

translated step by step to specific instructions that can be sent to the hardware.
This concept can be seen from two different perspectives: from a design point
of view, i.e. the customer does not explicitly define the entire product; and
from a manufacturing system perspective, i.e. product steps can be produced
by a number of different (hardware) systems. In both cases the system that
will perform a product step is not known a priori at the moment that the
product manufacturing process begins. The layered model, as seen in Figure
5.1 is used to show which steps are taken to delineate.

Composite Steps

Hardware steps

Product Description

Module steps

Abstraction steps

Agents

Designer

Hardware

Design layer

MAS layer

Hardware layer

Product steps

Figure 5.1: Product description from an abstract design to specific instructions
performed by the hardware.

The product description is based on five levels that each add more specific
information to the required manufacturing process. In this model the top layer
is the most abstract and is based on the original wishes of the customer, while
the bottom layer consist of the low-level instructions that control each module
in the equiplet performing the actual manufacturing steps. In this model the
manufacturing process is described by steps, which will need to be translated
to the next level by different systems to come to an explicit instruction that
will be used to control the hardware. The five steps are defined as follows:

1. The Abstraction Steps are defined by the customer and could explicitly
give some options or ”dont care” conditions of the design that can later
be filled in by the grid;

2. The Product Steps are manufacturing steps that describe (without knowl-
edge of the manufacturing systems) how the product should be manu-
factured;
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workspace that is still centrally controlled (Wang et al., 2009).

Trentesaux looked into distributed control systems and even distinguishes
three classes: Class 1: Centralised, Class 2: Semi-hierarchical, Class 3: het-
erarchical (all systems are equal). Based on his classification the grid manu-
facturing concept will be a true Class 3 system, where all products and man-
ufacturing systems will be equal and cooperative in the heterarchical sense.

Based on the related work it is presumed that there is still need for a
system that is both truly distributed, and in that sense, heterarchical i.e all
systems are equal and autonomous, and reconfigurable. Hence, we introduce a
system that falls more in line with Grid Manufacturing by introducing a new
concept.

5.4 The Concept of Product Step Translations

The objectives for reconfiguration are based on the specifications as men-
tioned in Chapter 3 Concept. The most important requirement is that no
system needs to be reprogrammed when it is reconfigured or a new product
is designed. Also, products are not specifically designed for the manufactur-
ing hardware. Hence, there needs to be a translation from the basic product
step that the product uses to describe its manufacturing process, towards the
instructions that the hardware will need to be able to perform those steps. In
classic manufacturing, all parts and manufacturing steps had to be explicitly
defined to be able to automatically produce a product. Customisation and
replacement of parts were handled before the manufacturing phase. However,
with the approach of grid manufacturing, a product can be manufactured dy-
namically. Hence, there is the possibility to use product customisation in any
phase of the manufacturing process. This opens the door to product abstrac-
tion, which is seen as an explicit abstraction in the product manufacturing
design. With product abstraction, parts of the manufacturing process can
be interpreted by the grid on demand. For example, different manufacturing
hardware might be capable of performing a similar service. In some cases
product abstraction can even be taken further, e.g. from the design perspec-
tive, if a colour has not been chosen for the product, the grid itself can choose
to produce the product with any colour based on parameters, like cost or
availability of specific equipment.

Based on the concept of product (manufacturing) abstraction, a vision
emerges where the manufacturing process begins from a high abstraction and is

translated step by step to specific instructions that can be sent to the hardware.
This concept can be seen from two different perspectives: from a design point
of view, i.e. the customer does not explicitly define the entire product; and
from a manufacturing system perspective, i.e. product steps can be produced
by a number of different (hardware) systems. In both cases the system that
will perform a product step is not known a priori at the moment that the
product manufacturing process begins. The layered model, as seen in Figure
5.1 is used to show which steps are taken to delineate.

Composite Steps

Hardware steps

Product Description

Module steps

Abstraction steps

Agents

Designer

Hardware

Design layer

MAS layer

Hardware layer

Product steps

Figure 5.1: Product description from an abstract design to specific instructions
performed by the hardware.

The product description is based on five levels that each add more specific
information to the required manufacturing process. In this model the top layer
is the most abstract and is based on the original wishes of the customer, while
the bottom layer consist of the low-level instructions that control each module
in the equiplet performing the actual manufacturing steps. In this model the
manufacturing process is described by steps, which will need to be translated
to the next level by different systems to come to an explicit instruction that
will be used to control the hardware. The five steps are defined as follows:

1. The Abstraction Steps are defined by the customer and could explicitly
give some options or ”dont care” conditions of the design that can later
be filled in by the grid;

2. The Product Steps are manufacturing steps that describe (without knowl-
edge of the manufacturing systems) how the product should be manu-
factured;
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3. The Composite Steps define the actions that a grid can perform, which
it offers as a service to the products. These services are still abstracted
from the hardware that performs them. Composite steps describe the
goal of the step that needs to be performed, e.g. place item X.

4. The Hardware Steps are the result of the translation from the compos-
ite steps to the specific hardware instructions that are required for the
hardware configuration of that equiplet. Hence, a hardware step is no
longer an abstraction, but specific for the hardware that will perform
the step.

5. The Module Steps adds some runtime information to the hardware steps
that were unknown at the hardware step layer, e.g. an object location
is given from the vision module towards the pick and place module. In
the final step all instructions become atomic and can be directly used to
control all hardware modules.

From a practical perspective the model is divided into three parts, the
design layer, the Multi-Agent System (MAS) layer and hardware layer. De-
pending on how explicit the customer wants to define the product, the design
can be made either within the abstraction or directly from the product step
level. The product steps layer can be automatically translated to service steps,
based on the capabilities of the grid. Once a composite step is scheduled to
a specific equiplet they can automatically be translated to a hardware step.
These last two translations are handled by agents within the MAS. However,
the equiplet and modules also have a representation that is used to describe
the instructions that will directly control the hardware. This is performed by
the hardware layer.

5.4.1 Capabilities

Each equiplet in the production environment has certain properties and be-
haviours that can be classified as functional capabilities (Järvenpää et al.,
2012). In a grid each equiplet has certain capabilities that are provided as
service to the grid. All the services in a grid can be used by the product agent
to manufacture a product. A capability is defined as a service description
combined with the limitations of the service. Examples of capabilities are pick
and place, or draw line. Limitations of these capabilities include the bound-
aries of the workspace. Basically in this study these are defined as follows:
Service = Abstraction of the provided service
Limitation = Min. Max. Weight, Dimension Limits, etc
Capability = [Service, Limitation]
ProductStep = <Service, Criteria>

Criteria = Weight, Dimensions, etc

According to these definitions, a capability is defined as the possibility
to actually perform a service step on an equiplet, i.e. all the criteria of the
ProductStep fall within the limitations of the hardware configuration.

A product agent divides the manufacturing of its product into product
steps. For each product step the agent uses a service of an equiplet. The
product agent defines a product step by the required service and criteria of
the service. Criteria of a product step include the dimensions and weight of
the part on which the service needs to be executed, e.g. one of the criteria
would be the dimensions of an object that needs to be pick and placed, so an
equiplet agent knows if it is able to perform the service.

5.5 Simplified overview of the Manufacturing Pro-
cess

Grid manufacturing utilises a heterarchical architecture, where products can
negotiate with equiplets in the grid to perform the next necessary step in the
production process. The required steps are known to the product agent, which
will negotiate the step with a selected equiplet. Since equiplets are modular
and reconfigurable they can have a unique configuration. As mentioned be-
fore, products are designed without knowledge of the manufacturing hardware.
To simplify the translation process, a common standardised set of services is
created.

The manufacturing process is described through several actions, which can
be processed in parallel by multiple equiplets for several products, making it
a continuous process that is performed on demand. The following actions
are first explained from an abstract perspective to give an overview of the
processes involved. Later in the Chapter they will be discussed in more detail.
For every product step the following (simplified actions) take place:

1. Capability checking - Determines if the equiplet is able to perform the
product step.

2. Step translations - Translated the abstract product step to specific hard-
ware instructions.

3. Scheduling - Schedules the product step at the equiplet that is able to
perform the step within parameters.

4. Step execution - The actual execution of the product step at the equiplet.
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3. The Composite Steps define the actions that a grid can perform, which
it offers as a service to the products. These services are still abstracted
from the hardware that performs them. Composite steps describe the
goal of the step that needs to be performed, e.g. place item X.

4. The Hardware Steps are the result of the translation from the compos-
ite steps to the specific hardware instructions that are required for the
hardware configuration of that equiplet. Hence, a hardware step is no
longer an abstraction, but specific for the hardware that will perform
the step.

5. The Module Steps adds some runtime information to the hardware steps
that were unknown at the hardware step layer, e.g. an object location
is given from the vision module towards the pick and place module. In
the final step all instructions become atomic and can be directly used to
control all hardware modules.

From a practical perspective the model is divided into three parts, the
design layer, the Multi-Agent System (MAS) layer and hardware layer. De-
pending on how explicit the customer wants to define the product, the design
can be made either within the abstraction or directly from the product step
level. The product steps layer can be automatically translated to service steps,
based on the capabilities of the grid. Once a composite step is scheduled to
a specific equiplet they can automatically be translated to a hardware step.
These last two translations are handled by agents within the MAS. However,
the equiplet and modules also have a representation that is used to describe
the instructions that will directly control the hardware. This is performed by
the hardware layer.

5.4.1 Capabilities

Each equiplet in the production environment has certain properties and be-
haviours that can be classified as functional capabilities (Järvenpää et al.,
2012). In a grid each equiplet has certain capabilities that are provided as
service to the grid. All the services in a grid can be used by the product agent
to manufacture a product. A capability is defined as a service description
combined with the limitations of the service. Examples of capabilities are pick
and place, or draw line. Limitations of these capabilities include the bound-
aries of the workspace. Basically in this study these are defined as follows:
Service = Abstraction of the provided service
Limitation = Min. Max. Weight, Dimension Limits, etc
Capability = [Service, Limitation]
ProductStep = <Service, Criteria>

Criteria = Weight, Dimensions, etc

According to these definitions, a capability is defined as the possibility
to actually perform a service step on an equiplet, i.e. all the criteria of the
ProductStep fall within the limitations of the hardware configuration.

A product agent divides the manufacturing of its product into product
steps. For each product step the agent uses a service of an equiplet. The
product agent defines a product step by the required service and criteria of
the service. Criteria of a product step include the dimensions and weight of
the part on which the service needs to be executed, e.g. one of the criteria
would be the dimensions of an object that needs to be pick and placed, so an
equiplet agent knows if it is able to perform the service.

5.5 Simplified overview of the Manufacturing Pro-
cess

Grid manufacturing utilises a heterarchical architecture, where products can
negotiate with equiplets in the grid to perform the next necessary step in the
production process. The required steps are known to the product agent, which
will negotiate the step with a selected equiplet. Since equiplets are modular
and reconfigurable they can have a unique configuration. As mentioned be-
fore, products are designed without knowledge of the manufacturing hardware.
To simplify the translation process, a common standardised set of services is
created.

The manufacturing process is described through several actions, which can
be processed in parallel by multiple equiplets for several products, making it
a continuous process that is performed on demand. The following actions
are first explained from an abstract perspective to give an overview of the
processes involved. Later in the Chapter they will be discussed in more detail.
For every product step the following (simplified actions) take place:

1. Capability checking - Determines if the equiplet is able to perform the
product step.

2. Step translations - Translated the abstract product step to specific hard-
ware instructions.

3. Scheduling - Schedules the product step at the equiplet that is able to
perform the step within parameters.

4. Step execution - The actual execution of the product step at the equiplet.
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The processes will be discussed in the following subsections. However, the
implementation and more specific technical details will be discussed later in
the implementation section.

5.5.1 Capability Checking

Capability checking is determining if the equiplet can perform the product
step. Figure 5.2 shows the steps of this process. Since reprogramming should
not be involved according to the specifications it is necessary to make the
process data-driven. Hence, the concept involves a database that should be
queried to determine which services and hardware configuration are necessary
and if the active configuration of the equiplet falls within the parameters.

Figure 5.2: The first (simplied) action that takes place in the manufacturing
process, the capability check.

5.5.2 Step Translations

The translation step itself needs to be performed in two steps, see Figure 5.3.
First, from product step to composite steps, it omits the part information,
i.e. it uses theoretical types of parts, without actually confirming which in-
stance of a part is available in the grid at that time (this will be handled
during scheduling). The next step is to translate the composite steps to Hard-
ware Steps. Hardware Steps are explicit instructions that are tailored for the
specific configuration of modules within that equiplet. After the translations
have been performed, the average duration is also known, since the instruc-
tions have a known average duration for execution with that specific hardware
configuration. Note that the translation process is always successful, since the

capability checking process has already determined if the equiplet is able to
perform the product step.

Figure 5.3: The second simplified action, translation actions.

The translation process is basically a delineation process, see figure 5.4.
A product step, e.g. place part A on component Y, has to be delineated in
multiple actions that need to be performed by multiple modules. The example
could require the use of cameras to identify the components, move instructions
and the opening and closing of a gripper. As such it involves a number of
steps that are completely dependent on the specific hardware. More specific
examples and how the process works will be discussed later in the current
chapter.

5.5.3 Scheduling

Scheduling in general is considered to be out of scope, since it is the responsi-
bility of the product agent, which is part of the research of Moergestel (2014).
However, it is discussed here on an abstract level since (1) it is part of the
proof of concept and (2) the translation process is needed to determine the
amount of time that the product step takes to perform on the specific equiplet
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queried to determine which services and hardware configuration are necessary
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stance of a part is available in the grid at that time (this will be handled
during scheduling). The next step is to translate the composite steps to Hard-
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specific configuration of modules within that equiplet. After the translations
have been performed, the average duration is also known, since the instruc-
tions have a known average duration for execution with that specific hardware
configuration. Note that the translation process is always successful, since the
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perform the product step.
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The translation process is basically a delineation process, see figure 5.4.
A product step, e.g. place part A on component Y, has to be delineated in
multiple actions that need to be performed by multiple modules. The example
could require the use of cameras to identify the components, move instructions
and the opening and closing of a gripper. As such it involves a number of
steps that are completely dependent on the specific hardware. More specific
examples and how the process works will be discussed later in the current
chapter.

5.5.3 Scheduling

Scheduling in general is considered to be out of scope, since it is the responsi-
bility of the product agent, which is part of the research of Moergestel (2014).
However, it is discussed here on an abstract level since (1) it is part of the
proof of concept and (2) the translation process is needed to determine the
amount of time that the product step takes to perform on the specific equiplet



| Chapter 05

86 

Figure 5.4: Delineation of the different steps, from standardised ”abstract”
Product Steps to specific Hardware Instructions.

hardware configuration, which is a result of the generic services and the differ-
ent configurations that might be able to perform the product step. As such,
the equiplet configuration directly influences the schedule in a way that can
never be determined a priori by the product.

The product agent wants to schedule its next step, see Figure 5.5 for the
simplified scheduling process. The shown process is for one step at one equiplet
and when failed can be repeated at another equiplet. However, as mentioned
before, depending on specific parameters and scheduling, it is not certain that
every equiplet can perform the step. This was determined directly in contact
with the equiplet. If an equiplet is found, it will determine if the equiplet
is able to perform the necessary step. The product agent will communicate
with an equiplet to ask if the equiplet is able to carry out the step. If it is
capable, the steps will be translated, which will determine how much time it
takes to execute the step for this specific equiplet configuration. When the
time is known that it takes to potentially execute the process step it is time
to find free time slots in the equiplet schedule. If this fails, the product agent
has to try again at another equiplet (or request another timeframe). If a time
slot is found, logistics will also be required to calculate if the product and its
parts can arrive on time for the requested time slot. If the schedule seems
possible, the translation information for that specific equiplet is stored and
the scheduling phase for this step is a success.

5.5.4 Step Execution

Figure 5.6 gives a simplified overview of the entire execution process, plac-
ing the other actions into context. When the scheduled time for a product
approaches, the equiplet will contact the product agent and request to start

Figure 5.5: Simplified scheduling action of one product step.

the execution of the next product step. The contact will normally trigger a
response of the product agent, synchronising the product and equiplet agent.
If positive, the equiplet will start performing the next manufacturing step by
sending the hardware steps to the different modules in its configuration.

5.5.5 Product Steps

Product steps define all steps of the manufacturing process of a product on an
abstract level. In grid manufacturing these steps are always independent of the
hardware. Hence, product steps are commonly defined by interactions between
parts, e.g a pick and place action where one part is placed on another, or a
typical Computer Numerical Control (CNC) action, e.g, a milling machine,
where one part (a tool in this case) is moved in a specific path over another
part.

Product steps are defined using the type, input parts, output parts, and
a set of parameters specific to the type. Depending on the value of these
parameters, a single type of product step may result in very different actions.
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simplified scheduling process. The shown process is for one step at one equiplet
and when failed can be repeated at another equiplet. However, as mentioned
before, depending on specific parameters and scheduling, it is not certain that
every equiplet can perform the step. This was determined directly in contact
with the equiplet. If an equiplet is found, it will determine if the equiplet
is able to perform the necessary step. The product agent will communicate
with an equiplet to ask if the equiplet is able to carry out the step. If it is
capable, the steps will be translated, which will determine how much time it
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ing the other actions into context. When the scheduled time for a product
approaches, the equiplet will contact the product agent and request to start

Figure 5.5: Simplified scheduling action of one product step.

the execution of the next product step. The contact will normally trigger a
response of the product agent, synchronising the product and equiplet agent.
If positive, the equiplet will start performing the next manufacturing step by
sending the hardware steps to the different modules in its configuration.

5.5.5 Product Steps

Product steps define all steps of the manufacturing process of a product on an
abstract level. In grid manufacturing these steps are always independent of the
hardware. Hence, product steps are commonly defined by interactions between
parts, e.g a pick and place action where one part is placed on another, or a
typical Computer Numerical Control (CNC) action, e.g, a milling machine,
where one part (a tool in this case) is moved in a specific path over another
part.

Product steps are defined using the type, input parts, output parts, and
a set of parameters specific to the type. Depending on the value of these
parameters, a single type of product step may result in very different actions.
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Figure 5.6: Start execution.

An example of a product step type with parameters, using Unified Modelling
Language (UML) operation signature, is: Place(subject : part, destination :
location). In this case the destination parameter can be relative to objects in
the work environment (such as parts). An instance of this product step might
for example look as follows: Place(Red Ball, (1,1,1) relative to Crate). This
example would result in a red ball being placed into a crate, at position 1,1,1
relative to that crate. In this instance, Red Ball and Crate refer to the part
type, not to specific instances of these parts.

5.5.6 Composite Steps

Composite steps consist of more specific actions, and take into account the
specific part instance, and where in the work environment they will be deliv-
ered. They do not take into account the specific hardware that is used. Each
Composite step also has a step type and a set of parameters specific to this
type. Every product step is translated into one or more composite steps, e.g.,
the product step ’Place’ shown in the previous subsection would be translated
to a composite step of type ’Pickup’ and a composite step of type ’Drop’. Both

with the parameters destination : location and safe movement plane : location
(the safe movement plane is the horizontal plane in the work environment in
which the pick and place robot can move safely). The translation example
results in the following steps:

1. Pickup((2,1,1.5) relative to crate A, (6) relative to work surface)

2. Drop((1,1,1.5) relative to crate B, (6) relative to work surface)

Crate A and crate B refer to specific crate entities, as composite steps always
refer to specific entities.

A composite step can consist of one or more mutations, a mutation is
a standardised abstract action that can be performed and describes the ab-
stracted actions that need to be performed for the composite step, e.g. move
to location Y and then pick up item X. Mutations are part of the internal
handling of composite steps. The Product Steps describes the action from the
Product view, e.g. place Item X on location Z. The Composite Steps then
translate these to the goals from the machine’s perspective, to place an item
it first needs to pick it up, by moving to the right point and pick it up (com-
posite step 1) and second move to the 2nd location where the item can be
placed (composite step 2). Where the composite step is still an abstraction
that needs to be performed by the machine as a whole, the mutations are
unique for a separate module, e.g. to pick an item up a gripper is required
and an action that moves the gripper. Hence, a composite step ’move and
pick up’ is decomposed to several ’mutations’ that can be handled by different
modules.

5.5.7 Hardware Steps

Hardware steps are the result of the last translation. They are explicit instruc-
tions for the configured hardware of the scheduled equiplet. These instructions
will be used directly by the ROS nodes to control the hardware. Like product
and composite steps, a hardware step also has a step type and a set of param-
eters. Every composite step is translated into one or more hardware steps,
e.g. the service step ’Pickup’ mentioned earlier is translated into the following
Hardware steps:

1. Delta Robot(Move, (*, *, 8) relative to origin)

2. Delta Robot(Move, (2, 1, *) relative to crate A)

3. Delta Robot(Move, (*, *, 3.5) relative to crate A)

4. Gripper(Activate)
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Figure 5.6: Start execution.
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that needs to be performed by the machine as a whole, the mutations are
unique for a separate module, e.g. to pick an item up a gripper is required
and an action that moves the gripper. Hence, a composite step ’move and
pick up’ is decomposed to several ’mutations’ that can be handled by different
modules.
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Hardware steps are the result of the last translation. They are explicit instruc-
tions for the configured hardware of the scheduled equiplet. These instructions
will be used directly by the ROS nodes to control the hardware. Like product
and composite steps, a hardware step also has a step type and a set of param-
eters. Every composite step is translated into one or more hardware steps,
e.g. the service step ’Pickup’ mentioned earlier is translated into the following
Hardware steps:
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5. Delta Robot(Move, (*, *, 8) relative to work surface)

The format being used here is: Module(action : Action, params : Param-
eter[]). Each hardware step is an instruction for a single module (or multiple
modules indirectly, through a single leading module). In this example some
parameters, such as coordinates, whose values are not important or can be
reused, are indicated by an asterisk(*). These are filled in at the module
level. In the case above, the x- and y-coordinates will stay the same, e.g. a
deltarobot at 3,4,5, which receives the instruction to go to *,*,8, will move to
position 3,4,8.

Figure 5.7 shows an overview of an example where the product step pick
and place is translated to specific hardware steps that can be used by an
equiplet.

Figure 5.7: Example of a simple pick and place action, from abstract product
steps to explicit hardware instructions.

The use of the translation system simplifies the reconfiguration process and
increases the flexibility of the entire manufacturing process. This is because
products use the abstract product step, which can be translated to the current
supply of manufacturing systems as a dynamic process, which can be changed
at any time.

5.6 Offering Services

Another part of the reconfiguration process is the ability to change the service
or capability that an equiplet can provide. As mentioned in section 5.4.1 we
define the capability as the ability to provide the right service and meeting
the right criteria to be able to perform the product step.

Figure 5.8: After an equiplet starts up or has been reconfigured it sends its
services to the directory facilitator.

5.7 Module Configuration

Every equiplet is configured using a number of modules. The modules have
a hierarchical reference to each other, which can be depicted in a tree. The
hierarchy is required due to the fact that modules can be physically attached
to each other. Figure 5.9 shows a Physical Module Tree with a pick and place
configuration using 4 different modules. The Physical Module Tree shows the
physical relation between the modules, e.g. the gripper in this configuration
is attached to a parallel manipulator (or deltarobot) that moves the gripper
to a specific position. All other modules are directly attached to the equiplet.

Every module supports one or more ’mutations’. A mutation is a standard-
ised method that describes the action that the module can take. A Composite
step can consist of one or more mutations. The mutations that an equiplet can
perform can be shown in a Functional Module Tree. The FMT is generated
specifically for each configuration. Figure 5.10 shows the FMT for the same
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5. Delta Robot(Move, (*, *, 8) relative to work surface)

The format being used here is: Module(action : Action, params : Param-
eter[]). Each hardware step is an instruction for a single module (or multiple
modules indirectly, through a single leading module). In this example some
parameters, such as coordinates, whose values are not important or can be
reused, are indicated by an asterisk(*). These are filled in at the module
level. In the case above, the x- and y-coordinates will stay the same, e.g. a
deltarobot at 3,4,5, which receives the instruction to go to *,*,8, will move to
position 3,4,8.

Figure 5.7 shows an overview of an example where the product step pick
and place is translated to specific hardware steps that can be used by an
equiplet.

Figure 5.7: Example of a simple pick and place action, from abstract product
steps to explicit hardware instructions.

The use of the translation system simplifies the reconfiguration process and
increases the flexibility of the entire manufacturing process. This is because
products use the abstract product step, which can be translated to the current
supply of manufacturing systems as a dynamic process, which can be changed
at any time.

5.6 Offering Services

Another part of the reconfiguration process is the ability to change the service
or capability that an equiplet can provide. As mentioned in section 5.4.1 we
define the capability as the ability to provide the right service and meeting
the right criteria to be able to perform the product step.

Figure 5.8: After an equiplet starts up or has been reconfigured it sends its
services to the directory facilitator.

5.7 Module Configuration

Every equiplet is configured using a number of modules. The modules have
a hierarchical reference to each other, which can be depicted in a tree. The
hierarchy is required due to the fact that modules can be physically attached
to each other. Figure 5.9 shows a Physical Module Tree with a pick and place
configuration using 4 different modules. The Physical Module Tree shows the
physical relation between the modules, e.g. the gripper in this configuration
is attached to a parallel manipulator (or deltarobot) that moves the gripper
to a specific position. All other modules are directly attached to the equiplet.

Every module supports one or more ’mutations’. A mutation is a standard-
ised method that describes the action that the module can take. A Composite
step can consist of one or more mutations. The mutations that an equiplet can
perform can be shown in a Functional Module Tree. The FMT is generated
specifically for each configuration. Figure 5.10 shows the FMT for the same
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Figure 5.9: Example of a Physical Module Tree for an equiplet with a pick
and place configuration.

pick and place configuration as was used in Figure 5.9. Here it is seen that the
Parallel Manipulator module grants the ’Move’ mutation, and the Workplane
module, the ’Locate’ mutation. The gripper provides two mutations: ’Pick’
and ’Place’. Summarised:

• Each module has standardised methods it can provide, i.e. the mutation;

• To provide a capability certain requirements have to be met, e.g. a com-
bination of modules that can perform the right mutations are required
to perform the requested service;

• Each mutation also has limitations to what it can offer, e.g. the weight
it can lift;

• The combination of a configuration of modules that match the service
requirements, and if the product falls within the limitations set by all
modules provides the ’capability’.

A potential risk for this method is the possible influence on the limitations
that modules can have on each other. These dependencies are currently mit-
igated by choosing the limitations wisely. This is performed by hand when
modules and limitations are developed. For example: if a gripper has a lim-
itation that it can hold an object with a maximum weight of X, X might be
influenced by the speed with which the gripper is moved by a moving module
that it is attached to. The potential risk can be mitigated by adding a lim-
itation of maximum acceleration to the gripper. The maximum acceleration

Figure 5.10: Example of a Functional Module Tree for an equiplet with a pick
and place configuration.

limit decouples the weight limitation by guaranteeing the gripper will be able
to carry the weight so long as the gripper does not increase its momentum by
the maximum acceleration.

5.8 Software Design

The abstraction of hardware should be explicitly designed to enable all the
mentioned reconfigurable systems. For this purpose a Hardware Abstraction
Layer (HAL) has been developed. How the HAL fits into the overall architec-
ture will be discussed in the next Chapter. The HAL has four main functions:

1. To translate the product steps to hardware instructions.

2. To Interface between the higher (logistic) and lower (hardware interfac-
ing) levels.

3. To enable reconfiguration processes of the equiplet modules.

4. To Determine the capability of an equiplet.

Based on these functions and the research on reconfiguration, the design
will be discussed in the next subsection.
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limit decouples the weight limitation by guaranteeing the gripper will be able
to carry the weight so long as the gripper does not increase its momentum by
the maximum acceleration.

5.8 Software Design

The abstraction of hardware should be explicitly designed to enable all the
mentioned reconfigurable systems. For this purpose a Hardware Abstraction
Layer (HAL) has been developed. How the HAL fits into the overall architec-
ture will be discussed in the next Chapter. The HAL has four main functions:

1. To translate the product steps to hardware instructions.

2. To Interface between the higher (logistic) and lower (hardware interfac-
ing) levels.

3. To enable reconfiguration processes of the equiplet modules.

4. To Determine the capability of an equiplet.

Based on these functions and the research on reconfiguration, the design
will be discussed in the next subsection.
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5.8.1 HAL Overview

To accommodate the main functions of the HAL, the following four main
entities have been designed:

• HardwareAbstractionLayer - Is responsible for creating the factories and
implementing abstract method calls. Acts on state and mode changes
of modules. The HardwareAbstractionLayer class is responsible for the
translation and execution processes.

• ModuleFactory - Is responsible for generating Module instances from
information stored in the Knowledge Database.

• CapabilityFactory - Is responsible for generating Capability instances
from information stored in the Knowledge Database.

• BlackboardHandler - The Blackboardhandler is used as an interface with
a Blackboard that can be used to communicate with the low-level sys-
tems. Other interfaces might become available as well based on further
research.

These main classes use the following seven support entities:

• ReconfigHandler - Is responsible for implementation of the Reconfigura-
tion API (insert/update/deletion of modules).

• Capability - Actual abstract class of a capability. Is responsible for
translating ProductSteps into multiple HardwareSteps.

• Module - Class of a hardware module, without further functionalities
to translate or execute. Provides specific information of a module (like
what it is connected to and where it is mounted on an equiplet).

• ModuleActor - Actual abstract class of a hardware module. Contains the
translate and execute methods. Is responsible to make dynamic loadable
modules like the Gripper module.

• KDBClient - Implements database calls.

• Translation process - A thread managing the translation of a product
step.

• Execution process - A thread managing the execution of hardware steps.

Figure 5.11 shows the (simplified) Class Diagram showing all main classes
of the HAL.

Figure 5.11: An Abstract (partial) Class Diagram of the HAL.

5.8.2 Translation and Execution Process

The entire process of how the HAL is used can be seen in Figure 5.12. The
process starts with an equiplet asking for a product step that needs to be
translated. The request is handled by the TranslationProcess thread, which
checks what capabilities are required to perform the product step. This is per-
formed by using the CapabilityFactory that queries the Knowledge Database
(in the Figure shown as DB). These actions result in composite steps that
contain several mutations, and a check of the functional module tree, men-
tioned before in Figure 5.10. The functional module tree is used to check if
the current hardware configuration of the equiplet is capable of performing
the steps. The composite step is processed step by step from the bottom of
the FMT. Each module checks which mutations it can perform through the
use of the capability class, which queries the knowledge database. When it
is able to perform the mutation it is taken out of the composition step. A
translation is successful if the composite step is ’empty’ after passing through
all the modules in the module tree.

If the translation is completed and all limitations are checked, the equiplet
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5.8.2 Translation and Execution Process

The entire process of how the HAL is used can be seen in Figure 5.12. The
process starts with an equiplet asking for a product step that needs to be
translated. The request is handled by the TranslationProcess thread, which
checks what capabilities are required to perform the product step. This is per-
formed by using the CapabilityFactory that queries the Knowledge Database
(in the Figure shown as DB). These actions result in composite steps that
contain several mutations, and a check of the functional module tree, men-
tioned before in Figure 5.10. The functional module tree is used to check if
the current hardware configuration of the equiplet is capable of performing
the steps. The composite step is processed step by step from the bottom of
the FMT. Each module checks which mutations it can perform through the
use of the capability class, which queries the knowledge database. When it
is able to perform the mutation it is taken out of the composition step. A
translation is successful if the composite step is ’empty’ after passing through
all the modules in the module tree.

If the translation is completed and all limitations are checked, the equiplet
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is correctly configured and ’capable’ of the task. This triggers the last step to
translate the composite steps to explicit hardware steps that can be executed
by the equiplet. Execution is also performed using the HAL.
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Figure 5.12: Action Diagram of the HAL.

5.9 Implementation

Reconfiguration is based on two main systems, the Hardware Abstraction
Layer (HAL) and the Knowledge Database (KDB). The current section de-
scribes the implementation of these systems based on the research and result-
ing design.

5.9.1 Knowledge Database

To enable flexibility most systems are data driven. Hence, the Knowledge
Database (KDB) is an important aspect for the reconfiguration process. The
database is used for storage of semi-static information, i.e. data regarding the
configuration of an equiplet, its modules, capabilities and services. At this
moment each equiplet has its own KDB. However, when changing modules,
data can be transferred through multiple interfaces (manually, i.e. by flash
drive or over the network) between the different databases that exist within a
grid.

Figure 5.13 shows the entity relation diagram of the knowledge database.
The knowledge database stores information regarding the following basic en-
tities:

Modules are the physical hardware configuration of the equiplet. The set
of modules within an equiplet defines the supported capabilities and thus the
supported services. Each module is either used by an equiplet or in storage.
If the module is configured, it is connected to the standard mountplate at
a certain coordinate. Some modules cannot be connected to the equiplet,
but to another module, e.g. a gripper is connected to a robot arm. Each
module must be identifiable, and each module has certain software to control
and represent the module to the equiplet agent. The Calibration tables are
used to enhance precision. Modules must be calibrated, and in order to do
this, various properties must be measured and corrected. This could either
be done by adjusting the hardware (for example: adjusting a potentiometer)
or adjusting the software. When calibration is performed by adjusting the
software, the calibration data and the calibration date must be stored. It
might be possible that a combination of modules needs to be calibrated. In
this case, when adjusting the software, the calibration data must be stored for
that set of modules.

Composite steps consist of a composition of one or more mutations ; mu-
tations are an important aspect, since they describe on a modular level which
standardised methods (actions) a module can perform. Mutations are very
simplistically defined and must be stored in the database. Each module has
a list of mutations it supports and which it requires to operate. The required
mutations are mutations that other modules need to provide for the module
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is correctly configured and ’capable’ of the task. This triggers the last step to
translate the composite steps to explicit hardware steps that can be executed
by the equiplet. Execution is also performed using the HAL.
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Figure 5.12: Action Diagram of the HAL.

5.9 Implementation

Reconfiguration is based on two main systems, the Hardware Abstraction
Layer (HAL) and the Knowledge Database (KDB). The current section de-
scribes the implementation of these systems based on the research and result-
ing design.

5.9.1 Knowledge Database

To enable flexibility most systems are data driven. Hence, the Knowledge
Database (KDB) is an important aspect for the reconfiguration process. The
database is used for storage of semi-static information, i.e. data regarding the
configuration of an equiplet, its modules, capabilities and services. At this
moment each equiplet has its own KDB. However, when changing modules,
data can be transferred through multiple interfaces (manually, i.e. by flash
drive or over the network) between the different databases that exist within a
grid.

Figure 5.13 shows the entity relation diagram of the knowledge database.
The knowledge database stores information regarding the following basic en-
tities:

Modules are the physical hardware configuration of the equiplet. The set
of modules within an equiplet defines the supported capabilities and thus the
supported services. Each module is either used by an equiplet or in storage.
If the module is configured, it is connected to the standard mountplate at
a certain coordinate. Some modules cannot be connected to the equiplet,
but to another module, e.g. a gripper is connected to a robot arm. Each
module must be identifiable, and each module has certain software to control
and represent the module to the equiplet agent. The Calibration tables are
used to enhance precision. Modules must be calibrated, and in order to do
this, various properties must be measured and corrected. This could either
be done by adjusting the hardware (for example: adjusting a potentiometer)
or adjusting the software. When calibration is performed by adjusting the
software, the calibration data and the calibration date must be stored. It
might be possible that a combination of modules needs to be calibrated. In
this case, when adjusting the software, the calibration data must be stored for
that set of modules.

Composite steps consist of a composition of one or more mutations ; mu-
tations are an important aspect, since they describe on a modular level which
standardised methods (actions) a module can perform. Mutations are very
simplistically defined and must be stored in the database. Each module has
a list of mutations it supports and which it requires to operate. The required
mutations are mutations that other modules need to provide for the module
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to be able to perform its own supported mutations. The Equiplet table holds
a unique identifier so it can be identified within the grid. An equiplet also has
a mountplate to which all the modules are attached. Modules are attached
using standardised hole placements in the mountplate. These holes are laid
out in a raster, with a constant distance between both horizontal and verti-
cal holes. The dimensions of a mountplate could be defined as the number
of horizontal or vertical mount holes multiplied by the distance between the
horizontal or vertical holes, respectively. Due to the standardisation of the
mountplate this data can be used to quickly determine the coordination of
attached modules, which simplifies the reconfiguration and calibration pro-
cesses. Data like schedules and position data is not stored within the KDB,
but is stored directly within the equiplet agents themselves. A Service is a
very abstract entity. It only has an identifier, which is a name. The Capability
table is used by the equiplet to control the modules and interpret the product
steps of a product. A capability consists of a specific set of mutations that are
supported by the equiplet with use of the functional module tree, which was
explained in subsection 5.7. A capability is considered to be of a ’type’. The
type is defined as a service and is used by the product agent to identify the
correct capability for a product step.

Besides these main entities the following tables are used:

The ModuleType table defines all hardware module types. The Module
table defines the actual physical modules. A module could be connected to an
equiplet at a certain position and has a set of properties. However, it is possi-
ble that a module is connected to another module. This is determined with the
attachedToLeft and the attachedToRight fields. With the left and right fields,
a tree can be constructed using the nested set model, which offers various
advantages over a traditional tree. The SupportedMutation table shows which
mutations a module supports, e.g. a delta robot can perform a move mutation
and a gripper can perform a pick and a place mutation. These supported mu-
tations are stored in the SupportedMutation table. The CapabilityTypes that
are associated with the modules are stored in this table. Each capability type
has its own piece of software. The CapabilityTypeRequiredMutations stores
which capability type requires which other mutations. This is stored in one
or multiple functional module trees. A capability cannot perform its actions
if the required modules are not present. The RosSoftware table contains the
software for the module type and the command to start the software of the
module types. The JavaSoftware table contains the software and the class-
name to use for the module type in HAL. The SupportedCalibrationMutation
describes which mutations it can support by a module within a specific state
before it is calibrated. The RequiredCalibrationMutation table defines which
states a module has to transition from and which calibration mutations are
required before it can be started. Some calibration mutations are optional and

Figure 5.13: Entity Relationship Diagram of the Knowledge Database.
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to be able to perform its own supported mutations. The Equiplet table holds
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cal holes. The dimensions of a mountplate could be defined as the number
of horizontal or vertical mount holes multiplied by the distance between the
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table is used by the equiplet to control the modules and interpret the product
steps of a product. A capability consists of a specific set of mutations that are
supported by the equiplet with use of the functional module tree, which was
explained in subsection 5.7. A capability is considered to be of a ’type’. The
type is defined as a service and is used by the product agent to identify the
correct capability for a product step.

Besides these main entities the following tables are used:

The ModuleType table defines all hardware module types. The Module
table defines the actual physical modules. A module could be connected to an
equiplet at a certain position and has a set of properties. However, it is possi-
ble that a module is connected to another module. This is determined with the
attachedToLeft and the attachedToRight fields. With the left and right fields,
a tree can be constructed using the nested set model, which offers various
advantages over a traditional tree. The SupportedMutation table shows which
mutations a module supports, e.g. a delta robot can perform a move mutation
and a gripper can perform a pick and a place mutation. These supported mu-
tations are stored in the SupportedMutation table. The CapabilityTypes that
are associated with the modules are stored in this table. Each capability type
has its own piece of software. The CapabilityTypeRequiredMutations stores
which capability type requires which other mutations. This is stored in one
or multiple functional module trees. A capability cannot perform its actions
if the required modules are not present. The RosSoftware table contains the
software for the module type and the command to start the software of the
module types. The JavaSoftware table contains the software and the class-
name to use for the module type in HAL. The SupportedCalibrationMutation
describes which mutations it can support by a module within a specific state
before it is calibrated. The RequiredCalibrationMutation table defines which
states a module has to transition from and which calibration mutations are
required before it can be started. Some calibration mutations are optional and

Figure 5.13: Entity Relationship Diagram of the Knowledge Database.
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are thus not required for the state.

5.9.2 HAL Implementation

The HAL consists of 25+ classes and is largely written in JAVA. The HAL is a
standard software object (or artefact, representing the equiplet hardware, from
an environment programming orientation) and is used directly by the equiplet
agent. The exact implementation is largely placed out of scope for this thesis,
since it provides limited extra insight to the concepts that are important to
the study. However, some internal working of the HAL will be discussed in
the current subsection to give a bit of insight into the implementation.

Figure 5.14 shows the main HAL class.

Figure 5.14: Hardware Abstraction Layer Class.

The class has three main functions:

1. Starting the translation process;

2. Execution of a hardware step;

3. (Module) Reconfiguration

Execution is performed by sending the required steps towards the hardware
layer of the system (which will be discussed in the next chapter). In the
current implementation they are sent through a blackboard that is used for

communication with the hardware. The translation process is performed with
use of the instances of specific capability classes, which have been made by
the Capability factory within the HAL, see 5.11 again for an overview of the
main classes. The created capabilities are used to translate the steps. Finally,
the reconfiguration is performed directly by the module factory.

5.10 Discussion

Decoupling the product manufacturing instructions, the product steps, from
generic services and the hardware, creates a large degree of freedom in design-
ing products and to utilise the reconfigurable manufacturing systems. The
proposed decomposition system that translates the steps has never before been
completed for industrial application. However, it has similarities with the ap-
proach of Heintz et al. (2007), which uses a knowledge processing on different
levels of abstractions to bridge the sense reasoning gap for uses in autonomous
UAVs.

The goal of the overall study was to design and test the capabilities of a
grid, by creating fully functional prototypes of a grid that can perform a num-
ber of different services. To be able to do this, both flexibility and costs are of
importance. As such, equiplets are designed to be low-cost, easily customis-
able, and both hardware and software systems needs to be standardised. This
has also led to a standardised platform, on which a range of products can be
added. Flexibility is increased further by the generic concepts of grid manufac-
turing, using autonomous software systems and reconfigurable hardware with
a dynamic transportation system. Together with the discussed translation
process opportunities are created for new business cases. This is important,
since Schild and Bussmann do mention that agent-based manufacturing sys-
tems still cope with difficult adoption by the market, mainly because flexibility
is not often a business case in and of itself (Schild and Bussmann, 2007).
Therefore the approach of grid manufacturing using equiplets also focuses
on specific markets, like Microelectromechanical (MEMS) manufacturing and
possibly new consumer markets like 3D-printed custom products or industrial
rapid prototyping.

While the current system provides a flexible basis for manufacturing, there
are challenges. One is the specific software that is required for the transla-
tions between levels. To be able to design a large variety of products, using
a variety of software, and also a large variety of different configurations, it is
necessary to create a large amount of classes that are able to specifically ad-
dress challenges that come with this variety. To simplify this, not only will the
processes involved in the manufacturing need to be standardised, as we pro-
vided some steps for in the current chapter, but also the hardware and product
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definition. Some steps are being taken in this direction. E.g. Järvenpää has
recently introduced a rule-based system to automatically match products and
capabilities of a manufacturing system (Järvenpää et al., 2012).

Another challenge is the distributed and autonomous architecture itself.
Currently responsibilities of systems are clearly defined. However, what hap-
pens if a system, due to an error, cannot fulfil its responsibilities? Current
error behaviour of equiplets involve the equiplet agent contacting its scheduled
products to try to reschedule. When an equiplet suddenly becomes deactivated
it might also be unable to report to the equiplet directory that it is no longer
capable to fulfil its steps. Initially, this might not be a big problem, since the
product will likely have several equiplets it will negotiate with. If one does
not answer this will not provide any problems, since it will choose another
capable equiplet. However, one can imagine these problems to grow to a scale
where the equiplet directory will require a clean up of outdated data to be
able to give the correct information to the product agents. These and other
similar cases might require more proactive actions from other agent systems
that need to be added to the architecture, increasing the complexity of the
entire architecture.

While many agent-based manufacturing systems have been mentioned in the
literature, they have barely been adopted by industry. The lack of practical im-
plementation is mainly due to the large costs, low amount of examples of flex-
ible manufacturing systems that have made it beyond the laboratory (Leitão,
2009), and a lack of standardisation (McFarlane and Bussmann, 2003). The
current chapter addresses some of these problems by increasing the flexibility
not only from a logistical perspective, but also by decoupling the hardware
and design process from the actual services that can be provided for agile
manufacturing purposes. The current chapter also mentions how the archi-
tecture is used to successfully create a heterarchical system where products
can be dynamically produced. Together with the reconfiguration this pro-
vides a scalable approach to manufacturing. Perhaps the most important
part of this chapter describes the translations between production
steps, providing the ability to dynamically use a variety of RMS to be able
to optimally manufacture a range of products.

The presented architecture shows promising results to aid in the future
adoption of flexible agent-based control systems and provide the ability to
offer new business cases to companies and create a shorter time to market
for new products. Finally, within the near future Grid Manufacturing might
have the impact to create more automated product manufacturing for high-mix,
low-volume products, in contrast to manual labour.

5.11 Future Work

Current work has focused on the translations and standard infrastructure to be
able to perform a variety of steps and support a small range of configurations.
While these systems are now largely available, some systems still need to be
improved. This includes the logistic and optimisation system. These systems
will be extended to take critical decisions in the manufacturing process, e.g. it
seems possible to dynamically optimise manufacturing processes in a grid, by
utilising BDI agents that will try to optimally advise equiplets and products in
the grid to optimally utilise the logistic systems and availability of equiplets.
Possibly, it can even advise to reconfigure the grid in such a way that produc-
tion lines will automatically ’emerge’ in a grid when a large amount of similar
product steps will need to be manufactured. In some cases it might be more
efficient to have certain equiplets close to each other or, depending on the size
of a batch, to create lines in a grid where the next product step will always be
completed close by. The grid might be able to determine these optimisation
possibilities with the use of simulations that evaluate future demand from the
current active product agents and grid configuration.

5.12 Conclusion

To conclude the chapter let’s restate the research sub-questions for the current
chapter:

RQ2a How can the product use the machines when it has no knowledge of
the manufacturing system or its (hardware) configuration? By standardising
the abstract steps it is possible to use a generic method that describes the
manufacturing process of any product. The equiplet also registers the services
it can provide at a Directory Facilitator, which the product uses to search
for an equiplet that can perform its steps. This way a product can be man-
ufactured without knowledge of the hardware of the manufacturing machine.
Hence, different machines could also possibly perform similar steps, thereby
increasing flexibility and possibly efficiency.

RQ2b How does the machine know which services it can provide after it
has been reconfigured? The machine uses the information in the Knowledge
Database to figure out its capabilities. This is done by creating the Physical
module tree that provides the dependencies between modules. From here
the Functional module tree is created that shows the standardised methods
(mutations) that each module in the configuration can perform. Within each
module the Knowledge Database shows which mutations it requires and which
it supports. The database can also check per service which mutations are
required. When these match, the configuration is able to perform the service.
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RQ2c How can the machine control its (changing) hardware modules? The
(abstract) product steps are decomposed by the HAL, which translates them
step by step for the specific hardware instructions that are required for op-
erating the equiplet where the product step is scheduled. The decomposition
process makes use of the information in the HAL and Knowledge database.
Hence, the translation is completely data-driven. More systems can be added
by adding the new information into the Knowledge Database.

This brings us to the original main question for this chapter: RQ2 Can
reconfigurable manufacturing systems be controlled without the need to repro-
gram them for every new product or hardware module? The answer to RQ2
is yes. By combining the abstract product steps and the HAL it is possible
to create a system that is mainly data driven. The HAL has a number of
factory classes that can create the required software modules when needed
from the Knowledge Base. This opens the opportunity to add new modules,
products, and capabilities to the grid without reprogramming existing and
running systems.

The main contribution of the current chapter is the use of the HAL, with
its data-driven translation system. Which creates a flexible system for recon-
figurable manufacturing systems.
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Architecture

The Vision and Reconfiguration chapters lay the foundation for Grid Manufac-
turing, providing flexibility in finding and handling objects, and flexibility in
how machines can be changed and used. Now that these foundations have been
established, it is time to define an overall software platform that utilises the
abilities of dynamic handling, and reconfiguration. The software architecture
for Grid Manufacturing is called REXOS, which comes from Reconfigurable
EQuipletS Operating System - REQSOS, where the QS is replaced by an X.
REXOS is meant as a proof of concept architecture that will be developed and
tested, based on the research nad developments discussed in this thesis.

Parts of this work have been published already in (Telgen et al., 2015b).

6.1 Problem Description

Grid Manufacturing in general should be flexible. The last chapters have
shown that making use of data from different systems and dynamically using
data driven systems can create this flexibility. However, flexibility also means
that systems are not designed for a specific purpose and have to adapt often.
This makes it harder for these systems to be optimised for performance. Yet at
the same time, performance is important for control of the hardware. Hence,
the problem is how to combine the flexibility on the high-level systems that
cooperate with the low-level systems, i.e. hardware, which need real-time
performance to run efficiently.

This chapter focuses on the platform that will provide for these problems
and which will be the basis for further study in the following chapters.

6.2 Research Question

The research question will focus on the main problem of this Chapter, the
creation and specification for a flexible software architecture that will provide
both performance for low-level functionality, as well as flexibility for high-level
functionality.

The main research question for this chapter was: RQ3 - What options are
available to combine flexibility and performance for software architecture in
grid manufacturing?

For the design it is important to examine a number of platforms and re-
search how they can interface without becoming coupled. The next section
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will review a number of platforms and technologies that could become the
basis of the Grid Manufacturing Software Architecture. To do this we first
look at one of the fundamental design properties for the architecture.

6.3 Design

As mentioned in the research question, the software architecture is expected
to have two commonly conflicting parameters, that is performance and flex-
ibility. These also follow from the functional requirements described in the
Grid Manufacturing concept that were discussed in Section 3.3.3.

Basically, these can be seen as two different requirements on the highest
level. When using Axiomatic Design it can be shown that a hybrid architecture
could be an option of interest.

To explain axiomatic design in more detail, an important rule of Axiomatic
Design was considered:

• Axiom 1: The independence Axiom - Maintain the independence of the
functional requirements;

• Axiom 2: the information Axiom - Minimise the information content of
the design.

These axioms indirectly show why cooperating autonomous systems like
MAS lower the complexity of a design, since many functional systems can be
isolated in a single entity.

As mentioned in the Problem Description, the architectural design has
to be able to have high performance and intelligent behaviour. This is a
common problem that has been recognised in recent literature (Heintz et al.,
2007), and has t be taken into account when designing a new architecture.
Based on Axiomatic Design (Suh, 1999) describes ways to ’decouple’ the design
parameters, i.e. how things are solved from the Functional requirements, which
is to say: what they should do. Axiomatic Design calls a design uncoupled
if one design parameter only affects one functional requirement. A classic
example that shows this is a warm water faucet. A warm water faucet has
two functions: 1. to adjust the temperature. 2. to control the flow rate of
the water. In traditional systems this was solved with two design parameters:
A. A cold water handle, B. A warm water handle. However, this defies the
axioms of axiomatic design since each design parameter (the water handles)
influences both functional parameters. Hence, a good design will decouple
this, by for instance using a thermostat and flow handle which controls both
aspects separately

Based on the methodology of axiomatic design this urges us to think of how
to decouple the required properties of the architecture. From this perspective

it becomes clear that the need for flexible, intelligent behaviour, and therefore
abstractness is in contrast with the performance. Hence, these systems could
be decoupled by using different platforms for each purpose. This could be
achieved by creating a separate high-level, and a low-level platform. The
high-level platform will deal with unexpected behaviour and logistical matters,
while the low-level platform will directly control the hardware.

Table 6.1: Simplified Design Matrix that shows the relationship between FRs
and DPs.

Low-level Platform High-level Platform

High Performance x

Intelligent Behaviour x

Table 6.1 shows the relationship between the requirements and the solu-
tion. In this case, the requirements are decoupled through the creation of a
hybrid architecture where multiple platforms are combined to potentially yield
the best of two worlds (Arkin, 1998). This in contrast to a system where one
platform is used where these requirements should be combined. Note that
these matrices commonly span much more details. However, in this case only
the choice for a hybrid platform is examined.

This choice is fundamental for the architecture. Instead of one platform,
two platforms will be used that will need to be combined for the creation of
the Reconfigurable Equiplets Operating Systems (REXOS) platform.

6.4 Choice of Technology

Grid Manufacturing can be seen as a complex system where many autonomous
systems have to interact. This is one of the reasons why it is important to
use autonomous entities to become as flexible as possible without creating too
many interdependencies that increase the overall complexity of the system.
As shown in Figure 6.1, and discussed in the Concept Chapter, a multi-agent
system could fit this requirement in that it offers a level of abstraction and
limits the sphere of influence for an entity.

The use of a MAS seems a good option to choose as a basis for REXOS, if
we investigate this further we can also look at five characteristics of a manu-
facturing environment (Moergestel et al., 2011):

1. Autonomy

2. Cooperative

3. Communicating
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Figure 6.1: The sphere of influence within a MAS (Jennings, 2001).

4. Reactive

5. Pro-active

Together with the set of requirements for equiplets and the grid, these fit
perfectly into the concept of grid manufacturing. Besides the manufacturing
processes themselves, agents provide many more possibilities that are out of
the scope for this study, e.g. a product agent that stays with the product
to analyse its behaviour and offers problem solutions whenever possible (Mo-
ergestel et al., 2013a). The agent that can represent hardware could also be
utilised to analyse efficiency and learn from the behaviour to optimise schedule
times and other logistic matters.

6.5 Choice of Platforms

Even though we choose to use MAS as a basis for REXOS, this does not
fulfil all requirements for grid manufacturing. MAS will provide a dynamic
decision platform that will represent all systems. However, it is normally
not suited for direct real-time control of hardware. Hence it is important to
investigate which platform could fulfil this requirement and to research how
these platforms could be successfully combined. To approach this task lets
first look at a number of agent platforms.

6.5.1 Agent Platforms

The platform that is used for REXOS has to meet certain requirements as
mentioned in the problem description. Five attributes also have to be satisfied,
which are part of the Customer Domain:

1. The platform needs to be scalable.

2. For flexibility the platform needs to be able to change or add new agents
during runtime.

3. The platform needs to be mature (for industrial application).

4. Performance needs to be sufficient to handle grid-wide logistics.

5. The platform should preferably be open-source, but also applicable for
industrial use with propriety, i.e. commercial/closed software, sources.

Six agent platforms have been investigated:

• 2APL1 (Dastani, 2008)

• JADE2 (Bellifemine et al., 2007)

• Jadex3 (Braubach et al., 2004)

• Madkit4

• Jack5

• Jason6

The choice for the agent platform has become Java Agent Development
Framework (JADE), since in JADE agents can migrate, terminate and start
in runtime. JADE has also been widely adopted and has an active community.
While JADE has no direct support for BDI agents it can be extended to add
this when necessary in the future. Currently the architecture does not force
the use of BDI. JADE is also compliant with the Interoperable intelligent
multi-agent systems specifications standard Foundation for Intelligent Physical
Agent (FIPA). Which makes it possible to easily extend the MAS with other
FIPA compliant systems.
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4http://www.madkit.org/
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6.5.2 Diverse Platforms

Besides the agent platform for the high-level systems, there is a need to com-
bine it with other platforms to control the low-level aspects, i.e. the hardware,
and satisfy the Customer Attributes and Functional requirements.

Robot Operating System (ROS) is a software framework that provides
services, tools and libraries for robots (Quigley et al., 2009). The framework
has extensive support for a variety of sensors and actuators and offers hardware
abstraction and low-level device control. ROS is free and open-source and uses
nodes as software modules that communicate with messages. Nodes can be
started and stopped in runtime, making it possible to adapt software modules
at any time. ROS has been created to create general purpose robot software
that is robust.7

Robot Operating System (ROS 2.0) is currently under development
and is being created to overcome some limitations of ROS 1.0, including real-
time requirements and use for multiple robots.8

MongoDB Due to the diversity and flexibility of the grid it is difficult
to define all schemas that relational databases use. MongoDB uses dynamic
schemas, is cross-platform and has a document-oriented database. Hence,
MongoDB can be used as a blackboard between platforms.

OpenCV Open Computer Vision can easily be integrated with ROS, it
is released under the BSD license and can be used on multiple platforms. It
has a focus on real-time applications and has been proven in many projects.
Hence, it is logical to choose for the OpenCV library to integrate OpenCV in
REXOS. The computer vision is used to identify and localise parts within the
working space of the equiplet and is used for other logistic processes necessary
for configuration and calibration of the systems, e.g. identification of a new
gripper.

6.6 Reconfigurable Equiplets Operating System

JADE, and ROS (1.0) have been chosen as the platforms to develop the hybrid
platform. The main reason for using ROS is its proven usefulness in many
projects and the experience from other projects9.

REXOS will be a distributed multi-platform system and as such will run
on a number of computers. Figure 6.2 shows a simplified overview of REXOS.

The basic logistics will run on a grid server that provides a Directory Fa-
cilitator (DF), Grid Data Acquisition System and Logistic manager. The DF

7http://www.ros.org/about-ros/
8http://design.ros2.org/articles/why ros2.html
9including Artemis R5-COP http://r5-cop.eu/ -last accessed 07-05-2016 and the RAAK-

MKB AEROBIC project

Figure 6.2: High-level software design of REXOS.

can be seen as a yellow page service that knows which equiplets are active
and what services they provide for the products. The Data acquisition will be
used for a possible connection to statistical and Enterprise Resource Planning
(ERP) Software. The Logistic manager is mainly meant for transportation of
parts and products within the grid. The Hardware Abstraction layer, exten-
sively discussed in Chapter 5 Reconfiguration, is also shown. The HAL will
be used directly by the equiplet agent and is connected through an interface
to the ROS platform, which will be discussed in more detail later on.

Products will be created dynamically, usually by an application, and will
then be moved to the grid (server) where they will be produced. If the product
has an embedded computer the product agent will be moved to the product
after it has been completed. However, it might also exist in the cloud. This
way the product agent can be of value throughout the entire life-cycle of the
product. This way it can provide a number of services for the owner and
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others who use it, e.g. manuals, repair or recycle information (Moergestel
et al., 2010).

Transport agents are responsible for the transportation of the device. De-
pending on the implementation this could be done in a number of ways, includ-
ing Autonomous Ground Vehicles (AGV) or with (multi-directional) conveyor
belts. The equiplet will be the main system in a grid and will have a number
of main platforms that each consist of one or more entities:

1. The Equiplet agent

2. The Hardware Abstraction Layer (HAL)

3. The ROS layer

All these platforms will commonly reside on one computer and are em-
bedded within the equiplet. The equiplet agent will represent the equiplet
hardware and interact with the grid and the products. It will also deal with
scheduling and determine its capabilities based on its configuration. When a
product arrives on schedule to be manufactured it will send its product steps
(Moergestel et al., 2011)to the equiplet agent, which will forward it to the
Hardware Abstraction Layer (HAL). The HAL can interpret the steps and
translate them to specific instructions known as ’hardware steps’ that will be
sent to the ROS layer to be executed.

The ROS layer consists of an equiplet node and at least one node per
module that represents the hardware module. It also consists of a spawner
node that is able to start new nodes when modules are reconfigured. The
equiplet node will receive instructions from the HAL. For the ROS layer an
environment cache has been created that represents the physical dynamic
environment. Information that the environment cache holds is, for example,
the position of products that are perceived by a computer vision or external
system.

The interface between the different platforms is essential for a successful
hybrid architecture. While Figure 6.2 shows a blackboard, other implementa-
tions have been developed and will be discussed in the implementation section.

6.7 Implementation

This Chapter is limited to the basic architecture of REXOS. The main focus
will therefore be on the infrastructure and platforms that are required for grid
manufacturing. As mentioned before in the introduction, the hardware is an
important aspect to prove the feasibility of the concept. As such this section
will show the implementation of the software platforms, the interfaces, but
will also give an overview of the hardware that is used.

6.7.1 Middleware

Figure 6.3 shows the implementation of an example of the JADE platform for
grid manufacturing, which consists of two equiplets and a grid server. JADE
uses a main container that can be connected to remote containers (which are
in the other equiplets). The main container holds a container table (CT)
and two special agents, called the Agent Management Service (AMS) and the
Directory Facilitator (DF). JADE has the ability to replicate or restore the
main container to remain fully operational in case of a failure.

Figure 6.3: The Java Agent Development Platform.

In every container there is a Global agent descriptor table (GADT) that
registers all the agents in the platform, including their status and location,
and a local descriptor table (LADT). The GADT in the remote containers
will be used for caching.

EqA and PA are the Equiplet and Product agent who will represent a
specific product or equiplet.

6.7.2 Grid

The grid provides logistic functionality, which the autonomous equiplets can
use. Based on the architecture shown in Figure 6.2 it is standard that the
GRID services run on a separate server. However, since the software runs
on a standard Linux system and the JADE environment can be moved or
distributed in any way, the GRID functionality can be run on any computer
within the network. As such it is possible to start it on a computer within
an equiplet. This creates the ability to quickly setup the functionality of an
equiplet without requiring a complete infrastructure.

Transport (van Moergestel et al., 2014; Moergestel et al., 2015, 2014) and
other logistic systems like scheduling (van Moergestel et al., 2012) are dis-
cussed in separate research and are considered out of scope for this study.
However, the references link directly to related work in this field that have
been specifically applied for Grid Manufacturing.
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6.7.3 Equiplets

The equiplet and its modules are specifically designed with grid manufacturing
in mind. An equiplet consists of a rigid base with standard mounting points to
attach modules. A standard equiplet is commonly used for assembly actions
and as such typically uses 4 modules to be attached, a manipulator, gripper,
vision system and a working plane. A standard equiplet stands on a rails to
be easily moved and holds a standard on-board PC. Several equiplets and a
number of modules have been developed and tested, e.g. Figure 6.4 shows a
demo setup of 2 equiplets configured with a pick and place setup.

Figure 6.4: Equiplet demo setup.

The REXOS architecture is based on different technologies, the C++-based
ROS and the JAVA-based JADE platform. Therefore, the interface between
these two is an important aspect for stability, performance and, therefore,
scalability issues. In reality, the first developed interface proved to have poor
performance. Hence, three different interface implementations have been de-
veloped over time and tested for the best performance:

1. Blackboard - using a mongoDB database.

2. ROS bridge - using a ROS node with a websocket.

3. ROS Java - using a ROS node developed in JAVA.

The blackboard implementation (see Figure 6.5) uses a MongoDB database
server and multiple MongoDB database clients. The HAL and ROS compo-
nents each have a client, connected to the server. By enabling the replication

feature of MongoDB (usually used to keep the databases of multiple servers
synchronised), the server generates an operation log, which logs all databases
and collections on the server. The clients listen to this operation log using
a tailable cursor, which is a specific control structure feature from MongoDB
where the database does not need to requery the database each time new in-
formation is added. The tailable cursor will track the opened document and
return new data that is added. This enables the clients to communicate with
each other via the server without having to periodically query the server.

Figure 6.5: ROS HAL interface using a blackboard.

The ROS bridge implementation (see Figure 6.6) uses a ROS node, which
acts as proxy between the HAL and ROS components. The bridge is written
in Python and is designed for flexible integration of ROS in other non-C++
systems. The bridge acts as a websocket server to the outside (for REXOS this
is the HAL component) and acts as a standard ROS node to the inside (for
REXOS this is the ROS component). Because the bridge acts as a standard
ROS node, the ROS component of REXOS can use standard ROS communi-
cation methods and messages, reducing the complexity of the interface.
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Figure 6.6: ROS-HAL interface using a ROS bridge.

The ROS Java implementation (see Figure 6.7) uses the rosjava core li-
brary10 to communicate between the HAL and ROS components. ROS is
currently available for C++ and Python. Rosjava core is an attempt to make
ROS available for Java. It implements the internal ROS infrastructure includ-
ing time synchronisation, namespace resolving, topic and service advertising,
and communication methods.

Figure 6.7: ROS HAL interface using a ROS JAVA node.

6.7.4 Modules

Modules are not designed specifically for a product, which enables the equiplets
to offer generic services to a variety of products. For this purpose a compo-

10https://github.com/rosjava/rosjava core

nent off the shelf (COTS) strategy is adopted together with modules that are
specifically designed for grid manufacturing using equiplets, and which are
developed using product family engineering. As shown in Figure 6.8, Prod-
uct Family Engineering uses common parts for as many different modules as
possible.

Figure 6.8: Two different parallel manipulators with 3 and 6 Degrees of Free-
dom using as many identical components as possible.

Currently, a number of modules have been developed specifically for grid
manufacturing, we discuss six:

Delta Robot is a parallel manipulator where three actuators are located
on the base, and where arms made of light composite material are used to
move parts. All moving parts have a small inertia, which allows for very high
speed and accelerations.

Figure 6.9 shows the schematics of the deltarobot that is specifically de-
signed to be used for equiplets. The end effector is designed in such a way that
grippers can easily be changed using a precise clicking system with magnets.
Many components of the delta robot are also manufactured using additive
manufacturing, making it easy to customise or produce parts for the modules
on demand.

The Delta Robot uses three actuators11 that are controlled using motor
controllers12. The controllers are directly accessed from the respective ROS
module node. Figure 6.10 shows the steppermotor class, which uses a modbus
interface. The modbus interface is offered by a generic InputOutput class that
is implemented by the InputOutputModBusRtuController class. This class
has been created for easy reuse throughout the system and is implemented by
all RTU modbus implementations.

11Oriental Motors PK566PMB
12Oriental Motors CRD514-KD
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Figure 6.9: Delta robot Hardware Component Schematics.

Since equiplets are not specifically designed for a product it is important
to have as much flexibility as possible to service a larger variety of product
types. For this purpose, the Delta Robot design with 3 degrees of freedom
was adapted to an inverted Stewart Gough platform, which uses 6 motors
to get a limited 6 degrees of freedom. Figure 6.11 shows this 6 DOF parallel
manipulator module. This module is very useful since products can arrive at
the equiplets in any orientation.

This specific Gripper module is controlled using modbus over TCP. This
is performed by an inline bus coupler13 that is accessed from the respective
gripper node. Most types of grippers that are currently used work with a
pneumatic system to move an effector or create a vacuum to pick up small
parts.

The Vision Module is of high importance within grid manufacturing.
The product location will usually not be preprogrammed and as such must
be detected dynamically in real-time. This is done by the Vision module that
uses an OpenCV-based detection system to determine either the location of
a product, or the location of a tray or other transport device that has the
knowledge of the location of the product relative to itself. The location data
found by the Vision Module will be delivered to the environment cache so
that other modules can easily access it. The standard vision module holds a
number of algorithms to deal with a variety of situations. It can automatically
calibrate its lenses and has a built-in correction and balance system to deal
with differences in lighting and distortions.

The Work plane is the area where a product, crate or vehicle that carries
a product is located. Many equiplets use transparent working planes such that
computer vision systems can be used to localise the specific parts. If a product

13Phoenix contact IL ETH BK DI8 DO4

Figure 6.10: The call/inheritance graph for the motor controller.

is placed on a crate or cart the product agent can usually infer the location
based on its own position as seen by the vision system. While the working
plane has no actuators or sensors itself, it is still seen as a module and has
a ROS node that represents it. The ROS node is used to calculate its own
position based on where it has been attached, its own known specifications
and calibrations using vision and markers that can be placed on the working
plane.

The Additive Manufacturing module can be used for a wide range of
tasks. Figure 6.14 shows the 3D printer module that can print any object, e.g.
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number of algorithms to deal with a variety of situations. It can automatically
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with differences in lighting and distortions.

The Work plane is the area where a product, crate or vehicle that carries
a product is located. Many equiplets use transparent working planes such that
computer vision systems can be used to localise the specific parts. If a product
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Figure 6.10: The call/inheritance graph for the motor controller.

is placed on a crate or cart the product agent can usually infer the location
based on its own position as seen by the vision system. While the working
plane has no actuators or sensors itself, it is still seen as a module and has
a ROS node that represents it. The ROS node is used to calculate its own
position based on where it has been attached, its own known specifications
and calibrations using vision and markers that can be placed on the working
plane.

The Additive Manufacturing module can be used for a wide range of
tasks. Figure 6.14 shows the 3D printer module that can print any object, e.g.
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Figure 6.11: An adaptation to the deltarobot, which uses 6 motors as an
inverted Stewart Gough Platform to create more flexibility.

Figure 6.12: Gripper call / inheritance graph.

Figure 6.13: Vision system.

casings or buttons for a unique customised internet radio. This module is an

important asset for grid manufacturing since it makes it possible to create a
variety of items not only for custom products, but also for the modules itself.

Figure 6.14: 3D printer module.

6.7.5 Basic Operation

While not all services of a grid are important for this Chapter it is relevant to
show the basic operation of a grid. Figure 6.15 shows the normal operation
when manufacturing. The sequence is implemented in the following way:

1. An equiplet agent is aware of the capabilities based on the modules it
has configured.

2. The equiplet agent registers its service at the Directory Facilitator (DF)
that acts as a ’Yellow Page’ service for the Product agents.

3. When a product agent is initialised it has a number of product steps that
describe how it needs to be manufactured, the product agent queries the
DF to find the services that could potentially perform the steps.

4. The product agent uses the list of equiplets it has received from the DF
to inquire the equiplets if they can match the specific schedule.

5. If the schedule can be met, the product agent also inquires if it can meet
its specific detailed criteria that the product may require for the product
step to be performed adequately.
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Figure 6.15: REXOS service.

6. When all criteria are met and the product arrives on schedule at the
equiplet it will send its instructions on how to perform the steps to the
equiplet.

7. The equiplet will translate the steps to its specific hardware and send it
to the equiplet node in ROS to control the hardware and perform the
specific step.

8. When done the equiplet agent will inform the status to the product
agent.

6.8 Evaluation and Performance

The next step will be to evaluate the performance and scalability by performing
a number of tests. These have been split in two types:

1. Synthetic test - to test the individual systems and communication laten-
cies during load (Telgen et al., 2013b).

2. Full testing in simulation mode - to test realistic cases using the entire
architecture.

6.8.1 Synthetic testing

First, a standard equiplet setup has been created that uses a ROS/JADE
infrastructure connected by a MongoDB blackboard, see Figure 6.16.

Figure 6.16: Synthetic test setup.

Three tests were performed:

1. Node-to-Node communication over ROS.

2. Agent-to-Agent communication using JADE.

3. A pick and place case utilising all layers.

For all three test cases 10,000 messages will be sent, where full round time
including a response message is measured. Results are shown in Figure 6.17,
which uses a trend line over 5 periods. The message is an instruction that
contains a JavaScript Object Notation (JSON) object that holds a target, ID,
instruction data and parameters.

The results show that ROS-to-ROS and JADE-to-JADE performance is
much better than when both are combined using a blackboard. Hence, differ-
ent interfaces were required to be investigated to handle the communication
between the ROS and agent layer. This was performed using the simulated
test system.

6.8.2 Simulated Testing

This section evaluates the performance of the entire architecture using a full
simulation of the system. The sources are identical to a real runtime situation,
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Figure 6.17: Synthetic test of ROS-to-ROS communication (bottom), Agent-
to-Agent communication (middle), and the pick and place test (top).

only the hardware responses are being simulated. The most important aspect
of this test is the different interface implementations that connect the (C++-
based) ROS and (JAVA-based) JADE platform.

To determine the best implementation for the interface between HAL and
ROS, every implementation was tested. The test has been performed using
custom-written software and measures the time required to communicate from
node A to node B and back to A. Node B will respond immediately. Node A
is always a ROS node, while node B is either a regular ROS node, a ROS Java
node, or a Java ROS bridge listener. The only exception are the blackboard
measurements. Because the blackboard implementation does not use the ROS
infrastructure, measuring the latency using ROS is not an accurate measure-
ment. Instead the time required to communicate from A to the MongoDB
server and back to A is measured. Because this gives an unfair discrepancy in
the measurement (the relevant case is to transmit a message from A to B and
receive a response from B), the blackboard latencies have been multiplied by
two to compensate for the message having to be sent twice (first from A to
MongoDB and then from A to B).

The idle equiplets are equiplets that have been started but are not per-
forming any tasks. The busy EQs are equiplets executing a hardware step
every 1 second and measuring data every 10ms. The measurements have been
determined using 100,000 samples.

The average latency as seen in Figure 6.18 has been measured with 10
and 50 active equiplets. At the time 50 equiplets were seen as a standard

Figure 6.18: Average latency of the different interfaces that have been devel-
oped.

grid size since it would encompass enough generic services to manufacture a
complete product. If more capacity was required multiple grids could than be
used in parallel. Other scenarios have also been measured, but produced less
relevant data. The ROS C++ topic, service, and action servers used are native
ROS communication methods and act as a reference. They are not actual
implementations of the interface. The data shows that the average latency for
the ROS C++ topics is the lowest. The ROS C++ service and ROS C++
actionServer also have a low average latency. The blackboard implementation
has a low base latency, but scales very poorly.

During the test it became clear that the blackboard implementation has a
specific point after which the latency increases spectacularly. This might be
caused by a connection pool in the MongoDB server running out, resulting
in other connections having to wait. The ROS bridge has a very high base
latency but scales much better. In all the other scenarios the base latency
is also approximately 10,000,000 nanoseconds (equals 10 milliseconds). This
suggests that the ROS bridge uses a periodical poll mechanism. The ROS
Java topic has very low base latency and seems to scale excellently.

Figure 6.19 shows the consistency of the latency of an implementation
of the interface. This shows how reliable the interface is when it comes to
consistent behaviour. The average deviation matches the average latency in
that once again the ROS C++ topic, ROS C++ service and ROS C++ action
server perform very well, while the ROS blackboard scales poorly. The ROS
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Figure 6.19: Average deviation of the latencies - note the different scale com-
pared with the average latency.

bridge has a quite high, but steady deviation.

6.9 Conclusion

The Chapter takes an all-embracing approach to self-organising, reconfigurable
autonomous manufacturing systems. The goal behind this is to provide a ba-
sis for a practical implementation by combining new technologies as a staging
ground for new manufacturing methodologies based on the industry 4.0 prin-
ciples that will boost the adoption by industry. Hence, this includes the de-
velopment of hardware, the use of system and software engineering principles
and integration of the newest hardware designing techniques. It also builds on
current advances in software by using distributed systems and combining them
in a hybrid architecture. The hope is that this leads to solutions that prove to
industry that the newest technology is becoming more and more suitable for
true mass adoption. This is done by investigating the current state of technol-
ogy, analysing the requirements and new developments in smart industry and
trying to encompass this in the concept of ’grid manufacturing’ that consists
of both a hardware platform, i.e. the equiplets, and a software platform, i.e.
REXOS.

The main research question, i.e. RQ3 - What options are available to
combine flexibility and performance for software architecture in grid manufac-
turing, was intended to show that grid manufacturing, based on the REXOS

platform, can combine low-level performance and flexibility using intelligent
behaviour. The choice to combine two platforms is supported by the axiomatic
design methodology, which strongly asks to decouple the requirements from
the design parameters. The results give insights into how both JADE and
ROS can best be interfaced using the JAVA ROS node that acts as a wrapper
for the messages from JADE towards the ROS platform. It also shows that
the interface between these platforms is crucial to get a scalable platform,
by demonstrating that the (originally developed) Blackboard interface was
severely lowering the performance when 50 or more equiplets were used. Ad-
ditionally, the chapter shows the functionality that REXOS and the equiplets
can provide.

This Chapter also evaluates the concept of grid manufacturing in general,
taking design techniques and hardware into account. The equiplet platform in
general and the modules specifically were designed using a low-cost strategy
where equiplets can easily be reconfigured, providing a high utilisation to a
minimal cost. This was done by combining product family engineering with
the use of many standard components. When specific components have to be
made they are commonly designed in such a way that equiplets can produce
them themselves, for example by using 3D-printed parts.

More generally, this Chapter makes it clear that it is essential to take an
applied approach to solve these problems. The industry will require work-
ing proof of concepts that not only tackle the theory but also the practical
problems that occur when working with complex systems such as the ones
demonstrated in this Chapter. The development and testing of all these sys-
tems have required a large amount of work but also add to the validity, and
therefore, usefulness for industry.

This research provides a number of insights:

1. ROS and MAS can be effectively combined - which decouples the per-
formance and intelligence gap.

(a) The MAS provides the abstractness to deal with the dynamics that
are required for self-organising systems.

(b) ROS gives the performance and tools to effectively develop a large
range of control systems that can be reconfigured.

(c) The choice to specifically combine JADE and ROS seems to be
effective.

2. The autonomous nature of both platforms makes it possible to adapt
part of the systems during runtime, which is an important aspect when
considering reconfigurability.
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3. The use of autonomous systems makes it easier to lower interdependence
between functionalities, creating a decoupled design, which lowers overall
complexity.

4. Combining different platforms like MAS and ROS have a high potential
for industry.

The combination of the requirements and propositions gives fuel to new
research in more practical problems that are fundamental for smart industry;
in future work both the aspects of (automatic) reconfiguration and dynamic
(safety) system behaviour will also be discussed in more detail. However, the
proposition as mentioned in the research approach section seems feasible.
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System Behaviour

Classic manufacturing systems work with completely predefined states that
define exactly what behaviour the machine can have. Each state contains the
steps that defines which actions it will take. This guarantees that a machine
cannot start to move or behave in an unexpected way that could be a risk
to itself or its surroundings. This behaviour is also clearly defined even for
Flexible Manufacturing Systems, e.g. a milling (CNC) machine. When a
program is loaded for a CNC sequence, the machine calculates the time it
will take to perform the entire program. When pressing the start button, the
access to the moving parts are blocked and the machine will go to the run
state until the entire sequence is completed. When finished it will go to a safe
state so that nothing will move and an operator or mechanic can take out the
CNC parts without risk.

The Chapter System Behaviour in this context encompasses exactly these
two aspects. First the states and behaviours of the machine, and second the
safety aspect.

Parts of this chapter has been published before in the following work:
(Telgen et al., 2013a).

7.1 Problem Description

Manufacturing systems should be reconfigurable and autonomous, and work in
a dynamic ’chaotic’ environment. This creates a challenge for the behaviour of
these systems. It makes it more difficult to predict when systems are running
or not, e.g. in a classic system the machine is commonly ’safe’ (it cannot move)
or it is ’running’ (the start button has been pressed and it starts to act). With
systems like equiplets these states cannot be defined as clearly. Possibly the
system is ready to start a pick and place action. However, the product did
not arrive yet and it is waiting for the camera to detect it coming into range.
Since the product and equiplet agents are in control the state could suddenly
change.

Besides the state itself, a second problem is present: There is a possibility
that the startup/shutdown/error behaviour of these systems is dependent on
the configuration and as such it is essential that a system is in place that
defines the behaviour and guarantees safe use of the manufacturing systems.

A third problem is also introduced through the reconfigurable aspect. In
classic machines the dimensions and products were clearly predefined and as
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such could be preprogrammed so the machine knows the dimensions and where
it could move safely. The configuration aspect changes this, since the machine
can change its modules and works with a whole range of products that are
unknown. Hence, it is much more difficult to predict how it moves and if
these moves are safe, i.e. it should not be able to hit itself or any products by
accident.

This brings us to the research questions for this Chapter:

7.2 Additional Research Questions

The main question is: RQ4 - What risks are introduced due to the reconfig-
urable and dynamic behaviour and how can they be mitigated? The main
question leads to three sub questions:

RQ4a How can the status be clearly identified and shown when using a di-
versity of reconfigurable modules?

RQ4b Can a classic state machine that is used for classic machines be adapted
for reconfigurable machines that act in a dynamic environment?

RQ4c How can we guarantee physical safeties when reconfiguring modules
with different physical aspects?

Grid manufacturing is challenging because it has two large unknown vari-
ables: both the machine configuration and the products are unknown. To
mitigate this, it is important to create a standardised state machine that de-
scribes the behaviour of the machine, and to be able to analyse if the machine
can be safely used. To do this, these two aspects will be discussed separately
in the two main sections of this Chapter:

Section 7.3 The Software Control System.

Section 7.4 Physical Safety.

7.3 Software Control

To minimise the potential for risk it is important to create a standardised
set of states that a machine can be in. These states describe what actions a
machine can perform, i.e. how it is controlled, and at what time and state
an action can be taken. This will help in understanding the behaviour of the
machine and as such increase its safety.

7.3.1 MAST

MAST stands for MAchine STates. It is a variation on a diversity of State
machines that are used in machines and is specifically designed for use with
reconfigurable machines. MAST can be seen as a part of a Supervisory Con-
trol And Data Acquisition (SCADA) system or Decentralised Control System
(DCS) within an Equiplet. While most systems in the grid are not hierarchi-
cal, the equiplet’s hardware and the software that does the low-level control
are hierarchical, since they have physical dependencies and are controlled di-
rectly by an equiplet agent. To elaborate this point the differences in control
systems is discussed.

7.3.2 Related Work

This chapter shows two perspectives of safety and control for manufacturing
systems. How these (distributed) systems are organised is an important as-
pect of the system. In the literature there are many references to distributed
control systems, even specifically for distributed production systems and agent
technology (Trentesaux, 2009; Khalgui and Mosbahi, 2010; Cho and Prabhu,
2007; Barata et al., 2008; Wang et al., 2009). However, while agent technol-
ogy and distributed control are often explicitly mentioned, distributed is often
used in the context of (dynamic) distribution of resourcesTrentesaux (2009).
This is clearly the case in Barata, who also refers to a true configurable system
using a multi-agent-based control system. He also explicitly shows the states
in such a system. However, he still uses a centralised and hierarchical control
system (Barata et al., 2008).

Trentesaux discusses this topic extensively and even classifies control sys-
tem in three classes (Trentesaux, 2009). Class 1: Centralised, Class 2: Semi-
hierarchical, Class 3: Heterarchical. While class 1 and 3 are self-explanatory,
class 2 is defined as a heterarchical system with a hierarchical layer. Wang
also clearly focuses on a distributed approach: ”a distributed and adaptive
approach is considered suitable for handling the dynamic situation.” However,
looking at his solution he uses (distributed) real-time information to create a
(centralised) cyber workspace where resources are updated by all distributed
systems. While this system is truly distributed from a status and sensor per-
spective, it is still centralised and hierarchical (Wang et al., 2009).

7.3.3 MAST Problems

The configuration of classical SCADA systems are stable, and systems have
a single purpose. The control system is usually centralised, i.e. hierarchical,
or at times distributed in such a way that predefined systems have a specific
task. Data is distributed between these systems, which is commonly done
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unknown. Hence, it is much more difficult to predict how it moves and if
these moves are safe, i.e. it should not be able to hit itself or any products by
accident.

This brings us to the research questions for this Chapter:

7.2 Additional Research Questions

The main question is: RQ4 - What risks are introduced due to the reconfig-
urable and dynamic behaviour and how can they be mitigated? The main
question leads to three sub questions:

RQ4a How can the status be clearly identified and shown when using a di-
versity of reconfigurable modules?

RQ4b Can a classic state machine that is used for classic machines be adapted
for reconfigurable machines that act in a dynamic environment?

RQ4c How can we guarantee physical safeties when reconfiguring modules
with different physical aspects?

Grid manufacturing is challenging because it has two large unknown vari-
ables: both the machine configuration and the products are unknown. To
mitigate this, it is important to create a standardised state machine that de-
scribes the behaviour of the machine, and to be able to analyse if the machine
can be safely used. To do this, these two aspects will be discussed separately
in the two main sections of this Chapter:

Section 7.3 The Software Control System.

Section 7.4 Physical Safety.

7.3 Software Control

To minimise the potential for risk it is important to create a standardised
set of states that a machine can be in. These states describe what actions a
machine can perform, i.e. how it is controlled, and at what time and state
an action can be taken. This will help in understanding the behaviour of the
machine and as such increase its safety.

7.3.1 MAST

MAST stands for MAchine STates. It is a variation on a diversity of State
machines that are used in machines and is specifically designed for use with
reconfigurable machines. MAST can be seen as a part of a Supervisory Con-
trol And Data Acquisition (SCADA) system or Decentralised Control System
(DCS) within an Equiplet. While most systems in the grid are not hierarchi-
cal, the equiplet’s hardware and the software that does the low-level control
are hierarchical, since they have physical dependencies and are controlled di-
rectly by an equiplet agent. To elaborate this point the differences in control
systems is discussed.

7.3.2 Related Work

This chapter shows two perspectives of safety and control for manufacturing
systems. How these (distributed) systems are organised is an important as-
pect of the system. In the literature there are many references to distributed
control systems, even specifically for distributed production systems and agent
technology (Trentesaux, 2009; Khalgui and Mosbahi, 2010; Cho and Prabhu,
2007; Barata et al., 2008; Wang et al., 2009). However, while agent technol-
ogy and distributed control are often explicitly mentioned, distributed is often
used in the context of (dynamic) distribution of resourcesTrentesaux (2009).
This is clearly the case in Barata, who also refers to a true configurable system
using a multi-agent-based control system. He also explicitly shows the states
in such a system. However, he still uses a centralised and hierarchical control
system (Barata et al., 2008).
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tem in three classes (Trentesaux, 2009). Class 1: Centralised, Class 2: Semi-
hierarchical, Class 3: Heterarchical. While class 1 and 3 are self-explanatory,
class 2 is defined as a heterarchical system with a hierarchical layer. Wang
also clearly focuses on a distributed approach: ”a distributed and adaptive
approach is considered suitable for handling the dynamic situation.” However,
looking at his solution he uses (distributed) real-time information to create a
(centralised) cyber workspace where resources are updated by all distributed
systems. While this system is truly distributed from a status and sensor per-
spective, it is still centralised and hierarchical (Wang et al., 2009).

7.3.3 MAST Problems

The configuration of classical SCADA systems are stable, and systems have
a single purpose. The control system is usually centralised, i.e. hierarchical,
or at times distributed in such a way that predefined systems have a specific
task. Data is distributed between these systems, which is commonly done
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over a local area network (LAN). However, a grid is reconfigurable by itself;
equiplets can be added while other systems are still active. The grid uses a
heterarchical approach, where the product directly negotiates with an equiplet
to perform the next production step. To make this flexibility possible, the
grid does not use a centralised control system. One of the biggest differences
this introduces, is that equiplets are activated on demand by autonomous
systems, i.e. the product agents. Besides the safety and dynamic aspects, the
distributed nature with different autonomous systems also requires another
approach than common SCADA systems.

7.3.4 Predictable Behaviour

Predictable behaviour is very important for safety, which is the most important
aspect when working with machines and control systems. In classic systems,
states were strictly defined. Because of the single-purpose and connected sys-
tems in a manufacturing line, the behaviour of the machine was known a
priori. However, the dynamic and distributed nature of grid manufacturing
implies that systems can start and stop unexpectedly, based on actions of the
product agent or when a system needs to be reconfigured. Error behaviour can
also be different since the autonomous equiplets are less dependent on each
other. The reconfigurable aspects of equiplets also introduces new problems.
The overall state of one system can depend on an undefined number of con-
figurations that might make the system less predictable. Hence, it is harder
to predict safety.

To summarize, this leads us to three subquestions:

RQ4d How can you better define the states that represent the autonomous
systems?

RQ4e How do you handle safety aspects in these systems?

RQ4f How can error behaviour be standardised when using reconfigurable sys-
tems?

7.3.5 Proposal

To solve these problems we introduce several concepts that define a represen-
tation of all systems concerning safety, with a state on several levels. Stan-
dardisation of this representation of the hardware is an important aspect to be
able to create compatibility between the reconfigurable systems. This requires
a clearly defined architecture.

In common practice the SCADA system is hierarchical in nature. How-
ever, while our system does provide a clear hierarchical architecture, the hier-
archy only indirectly influences the hardware systems. The production process

remains heterarchical, i.e. which equiplet will perform what action is deter-
mined only by cooperative negotiation. This makes it possible to provide the
maximum flexibility, which is realised by using autonomous systems. This in
contrast to other reconfigurable systems, like (Endsley et al., 2006) who looks
at module finite state machines in a reconfigurable manufacturing system. In
their approach systems are modular and reconfigurable, but the control is still
hierarchical in nature and determined by controllers on different levels.

To explain the proposed architecture in grid manufacturing, we look at the
presentation of a classical and grid manufacturing system.

7.3.6 Hardware Representation

From a hardware perspective, a classic manufacturing line hierarchy is set up
in four layers: Line, Cell, Module, Device (Puik et al., 2013a), see Figure 7.1.
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Figure 7.1: Classic line manufacturing hierarchy - LCMD - line, cell, module,
device.

In this system, a line consists of multiple production cells, where each cell
performs a specific operation. Products travel through the line where they are
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states were strictly defined. Because of the single-purpose and connected sys-
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implies that systems can start and stop unexpectedly, based on actions of the
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also be different since the autonomous equiplets are less dependent on each
other. The reconfigurable aspects of equiplets also introduces new problems.
The overall state of one system can depend on an undefined number of con-
figurations that might make the system less predictable. Hence, it is harder
to predict safety.

To summarize, this leads us to three subquestions:

RQ4d How can you better define the states that represent the autonomous
systems?

RQ4e How do you handle safety aspects in these systems?

RQ4f How can error behaviour be standardised when using reconfigurable sys-
tems?

7.3.5 Proposal

To solve these problems we introduce several concepts that define a represen-
tation of all systems concerning safety, with a state on several levels. Stan-
dardisation of this representation of the hardware is an important aspect to be
able to create compatibility between the reconfigurable systems. This requires
a clearly defined architecture.

In common practice the SCADA system is hierarchical in nature. How-
ever, while our system does provide a clear hierarchical architecture, the hier-
archy only indirectly influences the hardware systems. The production process

remains heterarchical, i.e. which equiplet will perform what action is deter-
mined only by cooperative negotiation. This makes it possible to provide the
maximum flexibility, which is realised by using autonomous systems. This in
contrast to other reconfigurable systems, like (Endsley et al., 2006) who looks
at module finite state machines in a reconfigurable manufacturing system. In
their approach systems are modular and reconfigurable, but the control is still
hierarchical in nature and determined by controllers on different levels.

To explain the proposed architecture in grid manufacturing, we look at the
presentation of a classical and grid manufacturing system.

7.3.6 Hardware Representation

From a hardware perspective, a classic manufacturing line hierarchy is set up
in four layers: Line, Cell, Module, Device (Puik et al., 2013a), see Figure 7.1.
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In this system, a line consists of multiple production cells, where each cell
performs a specific operation. Products travel through the line where they are



| Chapter 07

142 

manufactured step by step by cells, each cell conducts one specific product
step. The steps are performed by (hardware) modules, which are directly
controlled by the cell. Modules are specific systems that can individually
receive instructions, e.g. a motor controller for a pick and place machine or
Gripper. The modules are made up by devices, which are strictly hardware,
like sensors and actuators that are controlled (or used in case of a sensor) by
electronics.

Figure 7.2 shows the Grid Equiplet Module (GEM) architecture that is in-
herent to Grid Manufacturing (GM). The Grid only provides generic logistical
services. In GEM every equiplet is on the same level. In GM all high-level
systems have autonomous software counterparts based on the Cyber-Physical
philosophy. However, this is not the case for devices and as such they are not
part of the GEM architecture. Since devices have no (autonomous) software
component, they are considered ’stateless’. Even if they have a state, e.g. in
case of a toggle switch, the state cannot be checked. Hence, the lowest hard-
ware state that is represented in software is that of the module. An error that
can be detected at the (lower) device level, will influence the module state.

Another difference in GM is that since the machines can be multi-purpose,
the hardware state representation at the module level will only influence the
equiplet state when the module is actually necessary for a service that is active
at that moment. Finally, the equiplets can be completely autonomous towards
the grid.

All control of the hardware is performed by the modules, all higher systems
on the grid and equiplet level exist only in software. Because of this the state
of the hardware, the module state, is the most important state.

7.3.7 Module States

The module state (MOST) is the direct representation of the hardware of a
module. Each module has its unique state. The states are divided between
the normal states of the module and transitional states. A transitional state
is in definition temporary, and will only last until all actions have been taken
that are required to go to the next state, e.g. in a setup the software will
check if the system needs to be calibrated before starting and will conduct
the calibration before the system is changed to the standby state. Depending
on the module each state will have its own implementation depending on the
specific hardware. In some cases a setup or start can be aborted. However,
this will result in a change to the opposite transitional state, which will check
if any actions already conducted in the original state needs to be stopped or
shut down. In Figure 7.3 this state template is shown.

The definition of the states are as follows:

• Safe - The module is powered down and is inactive.

Figure 7.2: Grid system overview - GEM architecture - Grid, Equiplet, Mod-
ule.

• Setup - Will conduct a start-up sequence, including configuration, cali-
bration and possibly a self-test.

• Standby - The system is ready, but currently inactive. The actuators
are powered and ready to start, i.e. the system will check for commands
from an operator, or in Grid Manufacturing, a product agent.

• Start - The system has received a command and will start its operation.

• Normal - The system is active and running.

• Stop - Actuators are brought to their starting positions and the system
is brought to standby mode.

• Shutdown - Actuators are powered down and the system will become
unavailable for operation.

7.3.8 Modes

The module states provide a clear overview and are basically state machines
that represent basic hardware operation. With classic line manufacturing these
states could easily be controlled in a centralised manner. An operator would
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Gripper. The modules are made up by devices, which are strictly hardware,
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systems have autonomous software counterparts based on the Cyber-Physical
philosophy. However, this is not the case for devices and as such they are not
part of the GEM architecture. Since devices have no (autonomous) software
component, they are considered ’stateless’. Even if they have a state, e.g. in
case of a toggle switch, the state cannot be checked. Hence, the lowest hard-
ware state that is represented in software is that of the module. An error that
can be detected at the (lower) device level, will influence the module state.

Another difference in GM is that since the machines can be multi-purpose,
the hardware state representation at the module level will only influence the
equiplet state when the module is actually necessary for a service that is active
at that moment. Finally, the equiplets can be completely autonomous towards
the grid.

All control of the hardware is performed by the modules, all higher systems
on the grid and equiplet level exist only in software. Because of this the state
of the hardware, the module state, is the most important state.

7.3.7 Module States

The module state (MOST) is the direct representation of the hardware of a
module. Each module has its unique state. The states are divided between
the normal states of the module and transitional states. A transitional state
is in definition temporary, and will only last until all actions have been taken
that are required to go to the next state, e.g. in a setup the software will
check if the system needs to be calibrated before starting and will conduct
the calibration before the system is changed to the standby state. Depending
on the module each state will have its own implementation depending on the
specific hardware. In some cases a setup or start can be aborted. However,
this will result in a change to the opposite transitional state, which will check
if any actions already conducted in the original state needs to be stopped or
shut down. In Figure 7.3 this state template is shown.

The definition of the states are as follows:

• Safe - The module is powered down and is inactive.

Figure 7.2: Grid system overview - GEM architecture - Grid, Equiplet, Mod-
ule.

• Setup - Will conduct a start-up sequence, including configuration, cali-
bration and possibly a self-test.

• Standby - The system is ready, but currently inactive. The actuators
are powered and ready to start, i.e. the system will check for commands
from an operator, or in Grid Manufacturing, a product agent.

• Start - The system has received a command and will start its operation.

• Normal - The system is active and running.

• Stop - Actuators are brought to their starting positions and the system
is brought to standby mode.

• Shutdown - Actuators are powered down and the system will become
unavailable for operation.

7.3.8 Modes

The module states provide a clear overview and are basically state machines
that represent basic hardware operation. With classic line manufacturing these
states could easily be controlled in a centralised manner. An operator would



| Chapter 07

144 

Stop

NORMAL

STANDBY

SAFE

Start

SetupShutdown

Abort

Abort

Legend

Module State

Transitional 
state

State change

Abort

Figure 7.3: Module States (MOST) hardware representation.

give the command to go to a setup state and all lower systems in the hierarchy
would follow; when all systems report standby, the start command would be
given and all systems would start and go to normal, if necessary in a synchro-
nised manner. However, in grid manufacturing this is not the case. Systems
can start and stop not based on a centralised command with a push of a but-
ton, but because a product agent requires a service from a specific equiplet
agent. This also means that a start can happen unexpectedly and the ma-
chine could start moving without warning, which could be a cause for danger.
In this and other cases it is important to expand on the standard machine
states and create specific behaviour. This behaviour can either be initiated
as an automatic response in cases like an error, or as a specific extension on
normal behaviour, like debug or service behaviour, which can be a response to
a specific command from an operator. We call this extension on the standard
states a mode, see Figure 7.4; here several modes are shown. In a mode the
states can be redefined or extended, in some cases the mode can be extended
with extra possibilities or instructions, like with a pause command in a debug

mode (which is not shown in the figure, since it shows the same states as the
normal mode).

Figure 7.4: Modes provide a practical implementation to overwrite or redefine
specific behaviour required for some situations like errors.

In some cases the modes will also change the possible state or state tran-
sitions. For example, in case of a critical error the system will be forced into
an immediate shut down to power down all actuators. It is impossible to set
up the system after this happens until the problem has been fixed and the
system has been switched back to the normal mode. While the emergency
stop (E-stop) has the same behaviour as a critical error, the transitional state
is redefined. An E-stop always triggers a, fully redundant, electrical system
that decouples all power from the actuator. Hence, in the case of an E-stop
the modules do not have to be stopped. In this case only the software sys-
tems will remain online to perform damage control with the passive hardware
(sensors) and software systems that are still active, e.g. a product agent can
likely still be informed that its schedule will likely be delayed, which might
trigger the product agent to reschedule at another equiplet that can provide
the same service. In case of a normal (non-critical) error, the system will try
to continue operation and come to a standby. In the error mode the standby
can be interpreted as a stop, since a start will be impossible until the error is
resolved. In manufacturing this might happen when a dispenser is empty and
needs to be manually refilled. Since in error mode the system cannot start
unexpectedly the system can safely be approached. However, actuators might
be powered if they are still in standby state. If necessary the system can be
brought to a safe state.
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give the command to go to a setup state and all lower systems in the hierarchy
would follow; when all systems report standby, the start command would be
given and all systems would start and go to normal, if necessary in a synchro-
nised manner. However, in grid manufacturing this is not the case. Systems
can start and stop not based on a centralised command with a push of a but-
ton, but because a product agent requires a service from a specific equiplet
agent. This also means that a start can happen unexpectedly and the ma-
chine could start moving without warning, which could be a cause for danger.
In this and other cases it is important to expand on the standard machine
states and create specific behaviour. This behaviour can either be initiated
as an automatic response in cases like an error, or as a specific extension on
normal behaviour, like debug or service behaviour, which can be a response to
a specific command from an operator. We call this extension on the standard
states a mode, see Figure 7.4; here several modes are shown. In a mode the
states can be redefined or extended, in some cases the mode can be extended
with extra possibilities or instructions, like with a pause command in a debug

mode (which is not shown in the figure, since it shows the same states as the
normal mode).

Figure 7.4: Modes provide a practical implementation to overwrite or redefine
specific behaviour required for some situations like errors.

In some cases the modes will also change the possible state or state tran-
sitions. For example, in case of a critical error the system will be forced into
an immediate shut down to power down all actuators. It is impossible to set
up the system after this happens until the problem has been fixed and the
system has been switched back to the normal mode. While the emergency
stop (E-stop) has the same behaviour as a critical error, the transitional state
is redefined. An E-stop always triggers a, fully redundant, electrical system
that decouples all power from the actuator. Hence, in the case of an E-stop
the modules do not have to be stopped. In this case only the software sys-
tems will remain online to perform damage control with the passive hardware
(sensors) and software systems that are still active, e.g. a product agent can
likely still be informed that its schedule will likely be delayed, which might
trigger the product agent to reschedule at another equiplet that can provide
the same service. In case of a normal (non-critical) error, the system will try
to continue operation and come to a standby. In the error mode the standby
can be interpreted as a stop, since a start will be impossible until the error is
resolved. In manufacturing this might happen when a dispenser is empty and
needs to be manually refilled. Since in error mode the system cannot start
unexpectedly the system can safely be approached. However, actuators might
be powered if they are still in standby state. If necessary the system can be
brought to a safe state.
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7.3.9 States Throughout the Grid

Module states and the modes provide a basis for hardware state representation
and therefore safety in autonomous systems. Moreover, the module states, in
combination with metadata, can provide a better ability to provide informa-
tion about the grid. In this section we look at a part of the current grid
implementation to discuss which states are required to oversee the states in a
grid.

Implementation follows the GEM architecture as shown in Figure 7.5. The
ROS nodes are used for direct hardware control and the agents provide decision
abilities and diverse functionalities on the Equiplet and MAS layer. Take note
that a grid can consist of many equiplets, which each have their own set of
ROS Module nodes.
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Figure 7.5: States concerning safety in the GEM architecture.

• The module nodes directly control the hardware modules and lower de-
vices. On this level the module states are implemented and available for
the equiplet agent to use.

• The equiplet agent directly controls all hardware modules in an equiplet,
it has more knowledge of the system and can translate (abstract) services
to instructions specifically for the configured modules.

• The grid agent has no control purpose, but only provides the combined
status of all equiplets to show if all systems are safe.

Figure 7.5 also shows three states in the grid, which are specifically:

• Module state - A direct representation of the state where the module
hardware is in.

• Safety state - The overall state of all actors. Actors are modules that
can either move or have any other active parts, e.g. a heater. It uses
the knowledge of the hardware agent to determine which modules are
actors and gives the highest state of all actor module states to show if
the entire equiplet is inactive.

• Grid (safety) state - The highest state of any equiplet in the grid, such
that the grid is only determined safe if all systems in the grid are.

The module, safety, and grid (safety) state will provide a complete overview
of activities within the grid.

Grid Behaviour and Opportunities

While systems act autonomously, the states actually provide insight through-
out the grid to what is happening. Statuses are updated in real-time and
therefore autonomous agents can react to events that happen in another layer.
This provides the capability for a product to reschedule its steps at another
equiplet if its deadline could become unreachable through an error at a sched-
uled equiplet. Also a service agent could pro-actively inform all scheduled
products that operations might be delayed if a critical error occurred and the
hardware unexpectedly goes to a safe state.

7.3.10 Discussion

A state system has become more complex due to the use of autonomous and
reconfigurable systems. This is due to the fact that hierarchical systems are
easier to define and the dependencies between classical hierarchical systems
also mean that one system directly influences the state of another. Hence, due
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• The module nodes directly control the hardware modules and lower de-
vices. On this level the module states are implemented and available for
the equiplet agent to use.

• The equiplet agent directly controls all hardware modules in an equiplet,
it has more knowledge of the system and can translate (abstract) services
to instructions specifically for the configured modules.

• The grid agent has no control purpose, but only provides the combined
status of all equiplets to show if all systems are safe.

Figure 7.5 also shows three states in the grid, which are specifically:

• Module state - A direct representation of the state where the module
hardware is in.

• Safety state - The overall state of all actors. Actors are modules that
can either move or have any other active parts, e.g. a heater. It uses
the knowledge of the hardware agent to determine which modules are
actors and gives the highest state of all actor module states to show if
the entire equiplet is inactive.

• Grid (safety) state - The highest state of any equiplet in the grid, such
that the grid is only determined safe if all systems in the grid are.

The module, safety, and grid (safety) state will provide a complete overview
of activities within the grid.

Grid Behaviour and Opportunities

While systems act autonomously, the states actually provide insight through-
out the grid to what is happening. Statuses are updated in real-time and
therefore autonomous agents can react to events that happen in another layer.
This provides the capability for a product to reschedule its steps at another
equiplet if its deadline could become unreachable through an error at a sched-
uled equiplet. Also a service agent could pro-actively inform all scheduled
products that operations might be delayed if a critical error occurred and the
hardware unexpectedly goes to a safe state.

7.3.10 Discussion

A state system has become more complex due to the use of autonomous and
reconfigurable systems. This is due to the fact that hierarchical systems are
easier to define and the dependencies between classical hierarchical systems
also mean that one system directly influences the state of another. Hence, due
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to the more complex organisation of autonomous systems it is required to look
at distributed systems instead of a classic SCADA system.

The grid manufacturing approach we proposed provides a definition and
standardisation of states throughout the grid. This simplifies safety aspects
and improves predictable behaviour when reconfiguring systems and during
error situations. Grid manufacturing also increases flexibility by providing a
heterarchical software architecture where product and equiplet agents negoti-
ate directly to create new products. Because logistic systems, like conveyor
belts, are also implemented as (logistic) equiplets, the entire software process,
seen from a product’s perspective, can be seen as a heterarchical system in
the classifications as defined by (Trentesaux, 2009). However, looking deeper
into the system and considering the perspective from a hardware control gives
a different view. Hardware will always be hierarchical in nature, i.e. any
hardware system will always have a master-slave relation since a (possibly)
electric signal will always be a trigger for some device to start working. Seen
from this perspective, equiplets themselves are set up hierarchically, which
arguably makes a grid a class 2 semi-hierarchical system. The same can be
said for logistics, which creates a dependency between equiplets. In the fu-
ture these dependencies are planned to be optimised with the use of logistic
agents that monitor the states and load on the logistic equiplets to possibly
resolve these problems. While the details on logistics fall out of the scope of
this Chapter, they are mentioned because a logistics agent on the grid size
will likely influence systems on the equiplet level, making the system a class
2, semi-hierarchical control.

A standardised approach was discussed that provides a direct representa-
tion of the hardware, but also how this information is distributed throughout
the system. This makes it possible for other autonomous systems to react and
take action accordingly. Finally, handling errors and predictable behaviour
are treated using the modes system. Modes provide a practical, i.e. prag-
matic, implementation to overwrite or redefine behaviour required for specific
situations. A specific mode can block unexpected actions of an equiplet and
provide that extra flexibility required to handle practical problems like error
handling, or specific service capabilities. A new aspect of this work is also the
split in ’safety’ state and the module ’activity’ state. Since these are split,
sensors can still be used without safety problems, increasing the flexibility of
the system.

7.3.11 Machine State Conclusions

This section was given its own three Research Sub-Questions:

RQ4d. How can you better define the states that represent the autonomous
systems? Equiplets are not just on when the start button is pushed, or off

when the job is completed. When an equiplet agent is operating normally, jobs
are started dynamically in negotiation between the product and the equiplet.
To be able to handle this, a classic state system was designed that gives clear
definitions of each module state. On top of that, a safety state was created
that can force the equiplet with its hardware modules into a safe state. This
way both flexibility and defined system behaviour are known.

RQ4e. How do you handle safety aspects in these systems? The safety
state on the equiplet level can enforce a state within all actor nodes within an
equiplet, which gives a generic sense of safety, since it gives an expectation of
what the system is (not) able to do. However, another aspect of safety is the
physical safety, which will be discussed in the next section.

RQ4f. How can error behaviour be standardised when using reconfigurable
systems? Modes were introduced to deal with non-standard situations. An
error forces the states in another mode that redefines their behaviour. As
such, equiplet control systems will be forced into a stop and shutdown mode,
depending on the type of error. An error state can also be induced if an
equiplet takes too long to finish a transitional state, since this likely indicates
a problem.

In general this section on software control shows the organisation with
a definition of states, the mode system, and state representation for Grid
Manufacturing.

7.4 Physical Safety

This section focuses on the second part of the System Behaviour research. Its
primary focus is providing ’physical’ safety in dynamic environments when
using reconfigurable manufacturing machines. The last section shows how
software status is used to provide insight into whether the system is active or
can be approached safely. Basically it increases safety by giving more insight
in the status. However, this does not provide insight if a system is ’safe’ when
it is active, e.g. if it moves without hitting any objects or stresses certain parts,
e.g. joints to positions that might break them. In this sense this safety can be
seen as the Self-Protecting category from Autonomic ComputingComputing
(2003). Equiplets are meant to identify possible threats, even though they are
reconfigurable and work with a range of a priori unknown products.

This so-called ’physical’ safety while the system is operating is an aspect
that is discussed in this section. Parts of this work origins from an unpublished
technical document (Bakker and Telgen, 2015).
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7.4.1 Problem Description

While the state and control of the reconfigurable manufacturing was handled
in the last section, another problem is still not solved. This is the physical
safety aspect. Possibilities for collisions within the used systems are high.
Both products and hardware systems are not known a priori. Hence, it is
essential for safety reasons to identify if the machine can act, i.e. move, safely.
While the MAST system gives permission to a system to perform some action
this does not give any guarantee that the actions themselves are safe. Since
hardware can be reconfigured and products can be of any kind it is important
to create a system that checks if any physical movement could be a safety risk.

7.4.2 Proposal

Safety concerns with robots occur when they are performing a task, such as
grabbing an object. The robot might damage itself or its surroundings while
performing a task due to a (control) software error or incorrect sensor data.
This behaviour might damage the robot or its surrounding. A way to make
sure the robot will not damage anything, is to actually let it perform the task
and check the end results. A simulation makes it possible to do this safely. By
simulating the robot and the environment, the robot should behave exactly
as it would do in the real world. For this to work, it is essential that the
simulation is an exact, or a very close, replica of the real world. Differences
between the two might cause the robot to behave differently.

An important aspect of the simulation is that it is able to run within a
real, active manufacturing grid. This means that the simulation should be
integrated within the REXOS architecture, being able to run side by side with
the actual systems.

Scope

Only physical safety concerns that do not involve external influences are con-
sidered. In the simulation, the manufacturing systems and the products are
seen as a closed environment, i.e. the scope of the simulation is limited to
systems that are controlled by the GRID software. That is to say, human
operators are not within scope; it is expected that they are aware of the hard-
ware action range and monitor the MAST state which was discussed in the
last section to determine if a machine can be approached.

7.4.3 Sub Research Questions

The main Research Question for this section is: To what level can simulation
& modelling determine the safety of the system behaviour of a reconfigurable

production machine that works in a dynamic environment?

This question can be split into four sub-questions:

RQ4g What are safety concerns, and how can simulation address them?

RQ4h How can new models be added dynamically?

RQ4i How can the safety checks be integrated in the simulation?

RQ4j How can the simulation be integrated in the current REXOS system?

7.4.4 RQ4g - Safety Concerns

It is important to determine the safety concerns related to production machines
to be able to set the requirements of the simulation. With the requirements
known, a suitable simulator for the simulation can be found.

The following five safety concerns were identified:

• Objects colliding with too much force.

• Objects being exposed to too much stress.

• Objects becoming too hot or too cold.

• Joints going beyond their limits.

• Objects being exposed to air for too long.

The answers to the other research sub-questions of this section depends on
the used simulation. Hence, we first discuss the possible simulation engines
and choose one to develop and test a simulation that can be used for equiplets.

7.4.5 Simulation Engine

Many simulations only simulate logistic actions and are therefore usually in
2D, because the third dimension is not relevant, e.g. if the simulation consists
of robots driving on the floor of a room, the third dimension might not matter
because the robots will always remain on the floor. For those applications
simulators that only support 2D simulation are commonly used. However,
because the robots used for REXOS have robotic arms that can move in more
than 2 dimensions, the simulator must support 3D simulation.

The following three considerations have been taken into account:

• Does it support the simulation of fluids such as water? The robots in
REXOS are not made of fluids nor do they encounter fluids. Scenarios
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7.4.4 RQ4g - Safety Concerns

It is important to determine the safety concerns related to production machines
to be able to set the requirements of the simulation. With the requirements
known, a suitable simulator for the simulation can be found.

The following five safety concerns were identified:

• Objects colliding with too much force.

• Objects being exposed to too much stress.

• Objects becoming too hot or too cold.

• Joints going beyond their limits.

• Objects being exposed to air for too long.

The answers to the other research sub-questions of this section depends on
the used simulation. Hence, we first discuss the possible simulation engines
and choose one to develop and test a simulation that can be used for equiplets.

7.4.5 Simulation Engine

Many simulations only simulate logistic actions and are therefore usually in
2D, because the third dimension is not relevant, e.g. if the simulation consists
of robots driving on the floor of a room, the third dimension might not matter
because the robots will always remain on the floor. For those applications
simulators that only support 2D simulation are commonly used. However,
because the robots used for REXOS have robotic arms that can move in more
than 2 dimensions, the simulator must support 3D simulation.

The following three considerations have been taken into account:

• Does it support the simulation of fluids such as water? The robots in
REXOS are not made of fluids nor do they encounter fluids. Scenarios
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with not fully dried fluids (such as adhesive or solder) which could de-
form when not handled with proper care are plausible. However, these
scenarios do not require full fluid simulation. If necessary, limiting the
acceleration rate should also suffice to lower the risk of not fully dried
fluids.

• Does it support elastic materials? These materials bend when sufficient
force is applied. This is not relevant for the robots used for REXOS
as they are all made of rigid materials. Scenarios with elastic materials
which could deform when not handled with proper care are also plausible,
but also do not require full simulation as this could also be mitigated by
lowering the acceleration speed.

• Does it support physics? This is very important, as some robotic arms
configurations developed for equiplets are complex and use multiple mo-
tors rotating in conjunction with each other. To properly simulate these
arms, a simulator that supports physics is required as the final position
of the arm is determined by the forces applied by the motors. A physics
engine also allows measurements of forces applied to components of the
robots or product. This allows the simulation to determine if certain
forces exceed the maxima of the components.

These considerations have led to three possible simulation engine candi-
dates:

1. Gazebosim1 is an open-source simulator using OGRE3D2 for its ren-
dering. It supports physics via the Open Dynamics Engine (ODE)3

physics engine, but also supports other physics engines. Gazebosim only
supports rigid bodies and has experimental implementation of fluid sim-
ulation using particles. An interface between Gazebosim and ROS is
available. Gazebosim is licensed under Apache 2.0.

2. Webots is a commercial simulator using the ODE physics engine. It
offers various interfaces such as a Matlab interface, an URBI interface
and also a ROS interface. The simulation is feature-rich, as it enables
users to monitor various sensors (such as pressure sensors) visually. The
simulator requires a license. To check the validity of the license, Webots
requires a constant internet connection.

3. USARSim is a simulator based on the Unreal game engine. The ren-
dering and physics engines both use the game engine for these tasks.

1http://gazebosim.org/ - last accessed 23-03-2016
2http://www.ogre3d.org/ - last accessed 23-03-2016
3http://www.ode.org/ - last accessed 23-03-2016

Because the internal API of the unreal engine is commercial propriety
software, a reverse engineered API has been developed. Since the US-
ARSim uses the Unreal engine, environments can be constructed with
the Unreal Editor.

REXOS runs both in Java and C++. The C++ side of REXOS uses the
ROS framework for inter-process communication. Having a ROS interface is
therefore a pre. Gazebosim offers this interface, is open-source, and is free.
Gazebo is also recommended by the ROS community for simulating 3D models.
Therefore Gazebosim is considered to be the most suitable, and will be used
as the simulation platform for equiplets.

Gazebo makes use of models, since these have different properties that
are important for the physical safety, commonly the Simulation Description
Format(SDF)4 is used. The SDF format was specifically developed for Gazebo,
with scientific robot research in mind, and describes objects and environments
in an XML format.

This format uses some specific components that are important to be able
to understand some of the answers to the research questions:

• Links - Describe the physical properties of one ’body’, e.g. a wheel of a
bicycle. A link may contain a whole number of elements, including:]

– Collision: an element that encapsulates a geometry to detect if
’collisions’ occur.

– Visual: visualises a part of the link.

– Inertial: describes the dynamic properties of a link, e.g. mass.

– Sensor: collects data from a plug-in.

• Joints: describes the connection between two links.

• Plug-ins: a shared library from a third party that contains specific abil-
ities to control a model.

Now that the simulation platform is established the following research
questions can be answered.

7.4.6 RQ4h - Adding New Models to the Simulation

Because the production machines are reconfigurable, the simulation must sup-
port the addition of new hardware module models. This includes completely
new models that have never been used before. Since in Grid Manufacturing

4http://www.sdformat.org/ - last accessed 23-03-2016
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Gazebo makes use of models, since these have different properties that
are important for the physical safety, commonly the Simulation Description
Format(SDF)4 is used. The SDF format was specifically developed for Gazebo,
with scientific robot research in mind, and describes objects and environments
in an XML format.

This format uses some specific components that are important to be able
to understand some of the answers to the research questions:

• Links - Describe the physical properties of one ’body’, e.g. a wheel of a
bicycle. A link may contain a whole number of elements, including:]

– Collision: an element that encapsulates a geometry to detect if
’collisions’ occur.

– Visual: visualises a part of the link.

– Inertial: describes the dynamic properties of a link, e.g. mass.

– Sensor: collects data from a plug-in.

• Joints: describes the connection between two links.

• Plug-ins: a shared library from a third party that contains specific abil-
ities to control a model.

Now that the simulation platform is established the following research
questions can be answered.

7.4.6 RQ4h - Adding New Models to the Simulation

Because the production machines are reconfigurable, the simulation must sup-
port the addition of new hardware module models. This includes completely
new models that have never been used before. Since in Grid Manufacturing

4http://www.sdformat.org/ - last accessed 23-03-2016
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new products can also be introduced, it is also important to be able to add
models of products and parts. All the data (including the safety aspects) of
the module must be interpreted automatically and the simulation must adjust
accordingly.

When possible, it will allow REXOS to add models dynamically through
the use of ROS. Unfortunately the interface does not provide a method to
attach a (sub)model to another model, this provides a challenge, since the
reconfigurable aspect of equiplets implies that modules can either be connected
to an equiplet or to another module. Since these modules each have their
own module it is essential that to simulate them they should be able to be
’connected’ in the simulation. If this is not possible the model added to the
simulation will simply fall on the ground. However, there are several methods
to remedy this problem:

• Define a static component in the model or attach the model to the world
by determining fixed locations. Either method will ensure that the model
will remain in its position. However, it will become impossible to move
the model in any way. For some modules this will suffice, for others it
will not. A gripper piece attached to a robotic arm, for example, will not
work with this method as the gripper piece must match the movements
of the robotic arm.

• Define a Simulation Description Format (SDF). An SDF with a gripper
object could be used to attach two models to each other. To create a
connection between two models, both must have a ’collision’ element
and one must have an SDF gripper object. In Gazebosim a collision
element is a specific physical property that defines the shape of models
for the physics engine. More specifically the ’collision element’ encapsu-
lates an object to perform collision checking. This might be confusing
in this context, since the same word ’collision’ can both be used for the
’collision’ element as well as the event of a collision (two objects col-
liding). In this context, Collisions, i.e. multiple collision elements, can
collide. If this happens, the collisions have contact. When the gripper
object comes in contact with the collision element of the other model,
it will automatically create a connection and thus attach the two mod-
els. This method is suitable for this problem, since it allows models to
match the movements of their parent models. However, it is an expen-
sive method as it requires additional collision elements to be defined.
This has significant impact on the performance of the simulation as each
collision element has to be matched with every other collision element
to determine whether or not there is a legitimate contact between them.
Another problem is that the two models do not really collide with each

other, they are only adjacent to each other. While this too should count
as a contact, rounding errors in floating point data types might cause
the physics engine to miscalculate and causing the gripper object not to
connect with the other model.

• Generate an entirely new SDF file containing all the models connected
to each other. An external program is used to retrieve all the SDF files
from the individual models and generate a new SDF file. This new file
will become very large and thus very hard to read and debug. Therefore
this method is hard to maintain. A second problem is that the new
SDF file will contain a model that replaces all the old models, meaning
that every modification to the robot will result in having to replace the
entire robot. This not only takes longer, but also resets the entire robot
model. If a robot arm was locked in a certain position, a discrepancy
between the software and the model will occur after the reset. The
software will have to be restarted, told that the model has been reset
or will have to recalibrate. Either solution will involve modifications
and discrepancy between the behaviour for the simulated robot and the
real robot (the hardware of the real robot does not suddenly reset to a
different position).

• Write a custom plug-in that will dynamically connect the model with
the other model specified in the SDF file. This will still require an
external program to generate a new SDF file but it will only replace the
parameters for the plug-in. Once the model is loaded into the simulation,
the plug-in will start and immediately connect the model with the one
specified in its parameters, by adding a joint to the simulation.

The last option is chosen, since it is the most flexible, the easiest to imple-
ment and has no major downsides.

7.4.7 RQ4i - Integrating Safety Checks

The simulation must guarantee safety. Hence, safety checks must be inte-
grated. It is important to determine how a safety constraint can be specified
in a way that the simulation can interpret. Also it must be determined how the
method for reporting the results of a safety check back to the system can be
performed, without requiring extensive modifications to the existing software.

All the data associated with the models including the SDF files, meshes,
textures, and offsets must be properly managed so it can be inserted into
the simulation when necessary. REXOS already uses a method for managing
software components which is also suitable for managing the models. This
method uses a relational database called the Knowledge Database (KDB) for
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new products can also be introduced, it is also important to be able to add
models of products and parts. All the data (including the safety aspects) of
the module must be interpreted automatically and the simulation must adjust
accordingly.

When possible, it will allow REXOS to add models dynamically through
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els. This method is suitable for this problem, since it allows models to
match the movements of their parent models. However, it is an expen-
sive method as it requires additional collision elements to be defined.
This has significant impact on the performance of the simulation as each
collision element has to be matched with every other collision element
to determine whether or not there is a legitimate contact between them.
Another problem is that the two models do not really collide with each

other, they are only adjacent to each other. While this too should count
as a contact, rounding errors in floating point data types might cause
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that every modification to the robot will result in having to replace the
entire robot. This not only takes longer, but also resets the entire robot
model. If a robot arm was locked in a certain position, a discrepancy
between the software and the model will occur after the reset. The
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software components which is also suitable for managing the models. This
method uses a relational database called the Knowledge Database (KDB) for
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long term storage purposes. Figure 7.6 shows the entity relation diagram for
the related part of the KDB.

Figure 7.6: Cut-out of the entity relation diagram of the Knowledge Database.

In REXOS the software components are packed in ZIP files and extracted
by a ROS node which will also start the new software component. When a
module of the robot is added or removed, the KDB will be updated. The data
of the new module is provided via a large Javascript Object Notation (JSON)
file called the Static Settings file. JSON is a very flexible open-standard for-
mat. The data is de-serialised, i.e. taken out of its storage-specific format,
and inserted into the KDB. When a module is removed, this process works
in the exact opposite way: data is removed from the KDB and serialised to
form a static settings file. The same process can be used for the models, this
makes the REXOS system more consistent. The SDF files, meshes, and tex-
tures are packed in a ZIP file. The ZIP file is extracted by a ROS node called
the model spawner node when the model is to be inserted into the simulation.
The insertion and removal of modules works in the same manner. The mod-
els do not only contain SDF files, meshes, and textures but also constraints.
These are stored in their own tables at the KDB.

Joint Limitations

Components are connected by joints (in Gazebosim these are called links). In
context of the human body one could say that the shoulder is a joint, as it
connects the arm to the rest of the body. The same applies to robotic arms and
their models. Some joints can rotate freely while others have limited freedom.
Trying to rotate joints beyond these limitations might damage them. Hence,
the limitation of a joint is a (physical) safety concern. Joint limitations for
robotic arms or other components are defined in the SDF files of the models.
The simulation will prevent joints from rotating beyond these limitations by
applying a very strong force on the pieces connected to the joint, attempting
to rotate the joints back within limitations. This force will rotate the links
connected to the joint so that they match the constraints. There are scenarios
where two joints attached to the same link apply forces that counteract each
other, causing the link to remain in the middle between the two joints. If this
happens, it means that the physics engine is not able to resolve the model to
a stable state, and will continue applying forces on the link.

The distance between the joint and the link is called the error pose, i.e. an
erroneous position, and can be measured. See figure 7.7 for an example of a
joint that is at the wrong position due to forces pushing it away from the joint.
The error pose increases as the joint limitation is violated further. Because
the error pose equals zero in a stable situation, it can be used as a method for
determining whether or not the joint limitations are violated by providing a
maximum allowed error pose. The error pose is measured and compared by a
plug-in running in the simulation.

Figure 7.7: Limitations of the joint causes an error pose, where the joint is
detached from the connection point.
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Collision and Contact Force Limitations

Collisions between components result in large forces applied on these compo-
nents. This could damage the components, requiring replacement and causing
downtime. This is a safety concern and therefore it is important to prevent
these violations from happening. This can be accomplished by simulating the
robot and checking for any collisions.

Some materials can handle impact forces better than others, e.g. a wooden
component may bounce, while a glass component will break. The simulation
is able to determine the force and torque applied to the links as a result of
the impact. By specifying the maximum acceptable impact force for each link,
the simulation is able to determine whether or not the acceptable impact force
limit is violated.

This is one of the most important aspects of the simulation, since accidental
collisions between objects, like products and the equiplet, will need to be
avoided. With the use of the ’collision elements’ mentioned before, and the
use of a plug-in that monitors the force of these collisions, it can be measured
if an operation is safe to be run before it is performed with the real hardware.

Acceleration Limitations

Exposing components to high acceleration might cause them to deform or
lose subcomponents. When they are sufficiently deformed or have lost impor-
tant subcomponents, they need to be replaced. This causes downtime and is
therefore one of the physical safety concerns. However, the simulation can de-
termine the position of a component. By measuring the distance covered and
the elapsed time, the velocity can be determined. By measuring the change
in velocity over time, the acceleration can be calculated. Because components
tend to shake violently when in contact with other components, the accelera-
tion is calculated with 51 samples to smooth the acceleration. The shaking is
caused by the way the physics engine handles contacts between objects. The
acceleration is measured and compared with the limits by a plug-in running
in the simulation.

7.4.8 Implementation

The Gazebo simulation seems able to provide the ability to use or develop
the necessary plug-ins that will monitor all physical safety concerns, and has
the correct capabilities to ensure more safety for the REXOS system. The
models for the equiplets and modules were already available, since it has been
implemented using the models that were used to design and manufacture the
hardware for the equiplets themselves.

Figure 7.8 shows the GUI of the simulation. Both products and equiplets
with different modules can be configured using a command line interface.

Figure 7.8: The Gazebo simulation can create equiplets in any configuration.

In reality the simulation can be used to test all actions that an equiplet
can take, the plug-ins will raise alarm when one of the safety concerns violates
one of the given restraints. However, for the system to be effective it should
be integrated within the REXOS architecture, this will allow to test real cases
within identical code in a live system.

7.4.9 RQ4j - Simulation Integration

The simulation will be used by the REXOS system and therefore has to be
integrated. An integration method with a clear interface and without excessive
code duplication is essential. Therefore it is important to determine what the
best places are to integrate the simulation with REXOS.

In REXOS there are product agents (PA) and equiplet agents (EA). Prod-
uct agents represent a product and the first goal of the product agent is to
get itself manufactured. Therefore the product sends product steps to the
equiplet agents. A product step describes a desired output of a task, e.g.
place part A 2 millimetres above part B. It does not concern itself with the
actual task required to make this happen. The equiplet agents will receive the
product steps. The equiplet agents represents the robot capable of performing
tasks. As described in Chapter 5 it will use its Hardware Abstraction Layer
(HAL) to generate a task to reach the desired output (in REXOS this is called
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translation). A generated task is composed of multiple hardware steps, each
describing an action that needs to be performed by one of the equiplets actu-
ators. The hardware steps are then sent to ROS, which will forward them to
the correct actuator (module). The module software interpret the hardware
step and control the hardware accordingly.

To guarantee physical safety it is required to test each step before it is
performed with the real hardware. However, this can only be done with the
translated hardware steps that have been translated by the HAL for this spe-
cific hardware. Hence, the testing within the simulation will need to be per-
formed between the translation of the product step and ROS performing the
hardware steps. When testing, the hardware steps will go through the exact
same procedure as when performing the real robot performs them.

For the integration two integration points are chosen; a high integration
point at the MAS level, where the steps are sent to ROS for testing purposes
and a low integration point where the module control the hardware in the
simulation. Figure 7.9 shows the process that is used when the simulation is
active.

Figure 7.9: Sequence of translation, testing, and performing a product step.

The high integration point will capture messages to the real hardware and
will use the standard code to translate and run them through the simulation.

When no safety violations occur, it will rerun the commands through the
normal ’live’ hardware systems that will actually perform them. However,
since the simulation also uses the standard code that would normally directly
control the hardware, it is also required to create a ’low’ integration point that
takes over the low-level interfaces to the hardware. Both will be explained in
more detail.

Low Integration Point

Because the robot in the simulation should behave exactly as the real robot,
the integration that recycles the most software is the most preferable, as it
has the highest chances of correctly matching the behaviour of the real robot.
This way, existing software errors should occur in both cases. This means
that the integration of the simulation should occur at the lowest level possi-
ble. In this case this is the interface to the hardware. By providing a generic
interface to the hardware and implementing one for the simulation and one
for the actual hardware, all the higher levels (including various calculations)
do not require any modification and can be used either for the simulation or
the real robot. For example, the input-output controller class, used for com-
municating with various hardware such as sensors and valves, has an interface
that communicates with the higher classes. The input-output controller has
two real implementations (both using an industrial network standard, which is
called Modbus) and one simulated implementation (using ROS services). This
is shown in Figure 7.10.

Figure 7.10: Class diagram for the input-output controller that can switch
between simulated or real IO.
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High Integration Point

The best high-level integration point is mostly determined by the same factors
as the low-level integration point. However, the simulation should not be ex-
posed to the equiplet agents or other components in MAS. Yet it is important
to recycle as much software as possible as this increases the changes of the
simulation matching the behaviour of the real robot. Hence, the simulation
test procedure is integrated on the hardware abstraction layer level. This will
enable to simulation of an entire equiplet, including its specific configuration
with all modules and other hardware. To be able to test all functionality
the simulated equiplet has its own ROS nodes and its own hardware abstrac-
tion layer, which are identical to the real software that is used for the actual
equiplet.

Figure 7.11: The object diagram of the REXOS infrastructure with on the left
the real robot and on the right the simulated robot.

7.4.10 Simulation Opportunities

The original purpose for the simulation was to be able to test various physical
safety aspects. However, by creating a simulation many other opportunities
have arisen.

With the simulation any equiplet configuration can be created and tested
with the actual software that would also run a ’real’ equiplet. The simulation is
able to add modules, products or parts at any time. When adding objects the
user interface will inquire for a number of parameters, e.g. where to place an
object within the simulation environment. Figure 7.12 shows the simulation,
with the command line interface that starts new systems within the equiplet
simulator.

Figure 7.12: The running simulation with the Command Line interface that
could be used to add any equiplet or object ’on the fly’.

The simulation can be used to run fully simulated equiplets or even a full
grid with multiple equiplets. However, since the simulated robot can match
the exact behaviour of a real equiplet, it can be used to verify the exact steps
that an equiplet will perform. This is exactly what is done for the safety
concerns. When a real product step will be performed that could be a risk,
e.g. if a new product or configuration is active for the first time, it could be
tested with the simulation before the actual step is performed in reality. In
this case, the simulated equiplet can be seen as the (Cyber-Physical) shadow
of an equiplet. Only in this case, the shadow acts ’before’ the actual system
does. Hence, simulated robots used for testing purposes are actually called
’shadows’. The shadow is always simulated. However, the ’real’ robot could
also be (fully) simulated, since this requires no modifications to the system.
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Simulating ’real’ robots enables testing of environments with multiple robots
without having to acquire the hardware and thus saving costs.

This results in three types of robots:

• Real robots: These are real physical robots, existing in hardware. The
ROS nodes communicate with real hardware.

• Simulated robots: These are simulated robots, existing fully in the simu-
lation. They can be used for running a simulated grid without requiring
a physical counterpart.

• Shadow robots: These are simulated robots, existing in the simulation
and are used for running tests for another (either physical real or sim-
ulated) robot. Shadow robots cannot work standalone, i.e. they always
require a counterpart.

Since all the robot types can be combined it is possible to test a complete
production process with both real and simulated robots. This could be used
for a variety of possibilities for both testing and optimisation opportunities.

7.4.11 Physical Safety Conclusions

The following research sub-questions have been discussed in this section: RQ4g
- What are safety concerns and how can simulation address these? Safety
concerns are conditions/problems that will result in damaged hardware. Sim-
ulation can address safety concerns as it provides an environment where the
robot can safely attempt to perform its task. If the simulation is an exact or
very close replica of the real world, the behaviour of the robot should be the
same.

To properly simulate the robots used for REXOS, a simulator with a
physics engine is required. Fluid simulation and elastic materials are not
required. Gazebosim has been chosen as the most suitable simulator as it is
open-source, free and offers an interface to ROS. The Gazebosim has been cre-
ated with a number of plug-ins to handle specific aspects that are important
for use with equiplets.

RQ4h - How can new models be added dynamically? Models can be added
to the simulation through the ROS interface. However, this interface does not
provide a method to attach models to each other, which is required to be able
to dynamically create different configuration of modules for equiplets. Hence,
a method has been created to attach models to each other through a custom
written plug-in, which will add a so called ’joint’ to the simulation.

Because models can be added and deleted, it is important to properly
manage the data associated with them. The already existing infrastructure

in REXOS is suitable to store and copy models. Using the infrastructure also
simplifies the REXOS system and makes it more consistent. The models are
extracted by a specific spawner node in ROS.

RQ4i - How can the safety checks be integrated in the simulation? The
three safety concerns currently supported in the simulation are the joint con-
straints, the maximal force and torque acceptable for a collision with another
component, and the maximal acceleration rate that a component can handle.
These safety concerns are all monitored by plug-ins specifically designed to
monitor these risks and alert the REXOS system if the step is not safe to be
performed.

RQ4j - How can the simulation be integrated in the system? REXOS trans-
lates a product step into hardware steps. Testing of these hardware steps must
happen after the translation and before the actual robot performing these.
To integrate the simulation into REXOS two integration points must be ad-
dressed: The high integration point that receives the messages from the MAS
layer and the low integration point that handles the interface to the hardware.

Because the behaviour of the robot simulation should match the behaviour
of the real robot, it should also reuse as much code as possible. Therefore the
low integration point shall be on the interface to the hardware. By providing
a generic interface to the higher classes, switching between real hardware and
simulated hardware is very easy and does not require any changes to the higher
classes.

The high integration point is at HAL level. This reuses most software,
while not exposing the simulation to the equiplet agent. Because the simu-
lation simulates an entire robot, the software should also represent the entire
robot. Hence, the simulated (or shadow robot) robot runs its own complete
HAL and ROS software.

Simulated robots can be used as a mirror/shadow of a real robot or as a
standalone.

The performance of the HAL-ROS interface has become very important,
due to the simulation requiring more commands over the ROS-HAL interface.
A good performance significantly increases the number of robots that can run
on a single computer. However, this aspect was covered in Chapter 6.

The final conclusion for the physical safety section is the answer to the
main research question of this section: ’To what level can simulation and
modelling determine the safety of the system behaviour of a reconfigurable
production machine that works in a dynamic environment?’, together with
the research goal to reduce the change of safety concerns being violated, which
could result in damaged hardware. The goal was achieved by the simulation,
which greatly reduces a number of physical safety concerns by being able
to ’mirror or shadow’ a real equiplet and checking the actions that it will
take. This tests both the software as well as the physical safety concerns
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that were discussed in this section. To answer the main research question:
The simulation can greatly reduce the risks that have been discussed in this
section, which includes the use of dynamic products and the reconfigurable
aspect of the equiplets. However, the simulation is limited to aspects that are
known in its model. Therefore unknown disturbances, such as an operator
being in the vicinity, are not taken into account by the simulation.

7.4.12 Future Work

Based on the findings and results of this research, the following five recom-
mendations are made for future work:

• Add additional models - To fully integrate the simulation into REXOS,
additional models for all modules and parts must be provided. These
models should have all their specific safety concerns specified. Only a
limited amount of parts and modules have been modelled at this time.

• Add additional safety checks - Develop additional safety checks for the
simulation. This reduces the chances of the simulation not detecting a
problem. A possible additional safety check could for example be the
gripper overheating.

• Determine the duration of product steps - Develop a method to calculate
the duration of product steps using the simulation. This should improve
the estimated duration and allow the equiplet agent to use tighter sched-
ules and thus allow for higher productivity.

• Research quality control - Do additional research to use the simulation
as a quality control/quality check method by analysing the result of
the simulated steps. The behaviour of simulated robots matches the
behaviour of real robots, the quality of the performed tasks should be
about the same. The simulation also provides an API for determining
the location of components. By comparing the end result in the simu-
lation with the criteria specified in the product step, the quality can be
determined.

• Research large scale system behaviour - Use the simulation for simulating
multiple robots and the interaction they have with each other. Trans-
port of parts should also be included. This allows testing the system
behaviour of the entire REXOS system (the grid).

7.5 Discussion

The System Behaviour section focuses on problems that are specific for the
environment in which a grid operates, i.e. dynamic use of reconfigurable ma-
chines and products. However, generic safety and behaviour aspects that
are valid for any machine are considered to be out of scope. This is also why
generic machine safety guidelines are largely ignored in this chapter. However,
generic safety machine regulations are upheld in the actual implementation.

The simulation does handle a number of safety concerns, including the risk
of collisions, it does exclude aspects that are not inside the model, e.g. human
operators. However, the MAST system provide a generic basis to show if a
system can be approached by providing a state. Since a grid will work in a
professional environment it can be expected that all personnel are aware of
the state and its meanings and can therefore safely consider when an equiplet
can be approached safely.

From a machine state perspective it is challenging to define the REXOS
system. In contract to classic manufacturing, all systems work autonomously
and as such act, i.e. could change states, ’on demand’ of the product agent.
Hence, while Grid Manufacturing is in essence not a hierarchical system that
is controlled from a central point, it is essential to be able to use hierarchical
means to enforce a safe state when deemed necessary.

7.6 Future Opportunities

The most interesting aspect of future opportunities on the long term is to
create a ’complete’ Cyber-Physical System where all aspects of REXOS are
both available in real-time in the virtual, and the physical world. If sensors
will be added this could also increase the safety by adding unknown dynamic
factors, e.g. human operators, into the simulation. Other opportunities in the
short term could be:

1. Product step timing / Improved logistics

2. Quality control

3. Capability check

By performing a step in a simulation with the current configuration it
would be easy to calculate the precise time that it would take to perform a
product step. That will create the possibility to precisely predict how long
certain product steps will take. This information can be used to improve
the logistics and scheduling throughout the grid. Workloads could also be
balanced on basis of this work.
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Another aspect is also that of quality control. Since similar products can
be produced by different hardware it is important to check what the quality of
the performed steps were after they were performed. By performing this step
in the simulation it would be possible to test if certain configurations perform
better, e.g. place a part more precise. Theoretical consistency could also be
checked this way.

Another aspect is to check if the performed steps really fall within the
capabilities of a new configuration. New hardware and products could be
tested with different configurations and see if the results fall within the correct
capability and if this will still produce quality within the requirements.

7.7 Conclusion

This chapter has described a number of problems and risks that have been
introduced due to the reconfigurable and dynamic characteristics of the grid
manufacturing paradigm. Some include how a system behaves, which is de-
scribed in the MAST section. The MAST section works with standardised
states and modes that describe when a system is active or safe to approach.
The other aspect that has been investigated is that of the physical dangers,
which has been handled by creating a simulation that checks a number of risks
before an action is performed.

To specifically answer the original research questions: RQ4a - How can the
status be clearly identified and shown when using a diversity of reconfigurable
modules? The MAST system describes that modules are aware of its capa-
bilities and as such know if they have an actuator (that could be potentially
dangerous) or only passive (sensor) systems. Based on this knowledge it is
possible to be in a safe state, while some modules are still operational. The
MAST system also gives an overview of all systems on any level within the
GEM architecture.

RQ4b - Can a classic state machine that is used for classic machines be
adapted for reconfigurable machines that act in a dynamic environment? The
MAST state system within the GEM architecture provides a clear hierarchy
between modules and the overall control system. While equiplets and products
behave heterarchically, the states within an equiplet are strictly hierarchically
implemented and enforced so that no actuator can be used when an equiplet
should be in a safe state.

RQ4c - How can we guarantee physical safeties when reconfiguring modules
with different physical aspects? A simulation can ’shadow’ a real equiplet. The
simulation runs the same software and uses the real actual parameters to mimic
the actions before the real actions are performed by the actual equiplet. Most
aspects that are part of the models can be checked, including the limitation

of joints and collisions that occur. This greatly reduces the risks that occur
when dynamically handling a diversity of products with different hardware
configurations. However, it does not guarantee safety of use with objects,
e.g. operators, that are not part of the Cyber-Physical model. However, these
should trust on the MAST system to know which actions are permitted during
what state.

Both MAST state system using modes and the MAST state together with
the implemented simulation greatly improves the knowledge of the system
and its behaviour. The simulation also provides a safe way to analyse the
performance of a configuration or a new product that is introduced in the grid.
Especially the possibility to run the equiplet as a ’shadow’ to the real hardware
is a powerful tool to dynamically test new situations and/or configurations.
Hence, safety risks that are introduced by the reconfigurable and dynamic
aspects of the Grid Manufacturing paradigm are greatly reduced by these
systems.
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Validation and Utilisation

The last chapters have explored the technical aspects of the Grid Manufactur-
ing paradigm. The next step is to see how grid manufacturing could be utilised
in new ways and investigate the impact it can have on a logistic level. Note
that the goal of this chapter is not to prove overall efficiency or optimise Grid
Manufacturing systems. However, the chapter will show new ways to utilise
the capabilities of a grid and explore a small amount of cases that are meant
as a proof of concept. Also, it will discuss the impact of reconfiguration and
the ability to automate manufacturing of products that were still undefined
when the equiplets of the grid was taken into operation. Also, it will discuss
ways to mitigate the challenges that these unknown factors introduce.

Parts of this chapter have been published at the 24th and the 25th In-
ternational Conference on Flexible Automation and Intelligent Manufacturing
(FAIM2014 & FAIM2015) (Telgen et al., 2014, 2015a) and have been used for
and from the master thesis of (van den Brink, 2015), which was performed
and supervised in concurrence with this research.

8.1 Additional Research Questions

The main Research Question for this chapter is: RQ5 - What is the best way
to utilise the possibilities of an agent-based manufacturing grid and therewith
validate its efficiency?

This research question is meant to explore the possibilities and in some
cases increase the efficiency of Grid Manufacturing. Since flexibility by it-
self is the goal this chapter will not focus on finding optimal efficiency, but
more on how to utilise certain aspects of the system in an efficient manner.
Note that Grid Manufacturing is dynamic, with changing capabilities of the
equiplets due to the reconfigurability and is meant for high-mix, low-volume
production. Hence, scheduling is of less importance than with classical man-
ufacturing where the supply and demand is known a priori.

The research questions can be categorised in two categories:

• Proactive aspects - Can agents use top-down (hierarchical) management
to optimise production in a pro-active manner?

• Reactive aspects - In reality, some practical factors, like disturbances,
occur in the system. These can have a large impact on the efficiency.
How can the features of grid manufacturing be used to react to these
disturbances and minimise their negative effects?



Validation and Utilisation |

173 

8

Validation and Utilisation

The last chapters have explored the technical aspects of the Grid Manufactur-
ing paradigm. The next step is to see how grid manufacturing could be utilised
in new ways and investigate the impact it can have on a logistic level. Note
that the goal of this chapter is not to prove overall efficiency or optimise Grid
Manufacturing systems. However, the chapter will show new ways to utilise
the capabilities of a grid and explore a small amount of cases that are meant
as a proof of concept. Also, it will discuss the impact of reconfiguration and
the ability to automate manufacturing of products that were still undefined
when the equiplets of the grid was taken into operation. Also, it will discuss
ways to mitigate the challenges that these unknown factors introduce.

Parts of this chapter have been published at the 24th and the 25th In-
ternational Conference on Flexible Automation and Intelligent Manufacturing
(FAIM2014 & FAIM2015) (Telgen et al., 2014, 2015a) and have been used for
and from the master thesis of (van den Brink, 2015), which was performed
and supervised in concurrence with this research.

8.1 Additional Research Questions

The main Research Question for this chapter is: RQ5 - What is the best way
to utilise the possibilities of an agent-based manufacturing grid and therewith
validate its efficiency?

This research question is meant to explore the possibilities and in some
cases increase the efficiency of Grid Manufacturing. Since flexibility by it-
self is the goal this chapter will not focus on finding optimal efficiency, but
more on how to utilise certain aspects of the system in an efficient manner.
Note that Grid Manufacturing is dynamic, with changing capabilities of the
equiplets due to the reconfigurability and is meant for high-mix, low-volume
production. Hence, scheduling is of less importance than with classical man-
ufacturing where the supply and demand is known a priori.

The research questions can be categorised in two categories:

• Proactive aspects - Can agents use top-down (hierarchical) management
to optimise production in a pro-active manner?

• Reactive aspects - In reality, some practical factors, like disturbances,
occur in the system. These can have a large impact on the efficiency.
How can the features of grid manufacturing be used to react to these
disturbances and minimise their negative effects?



| Chapter 08

174 

Seen from these categories we ask the following four sub-questions:

RQ5a How can we validate the system in different cases?

RQ5a1 In what cases is grid manufacturing expected to be implemented?

RQ5b What are the unique factors that influence the production efficiency
of a grid?

RQ5b1 What impact does reconfigurability of the production platforms
have on production efficiency?

RQ5b2 How do disturbances impact the manufacturing systems?

RQ5c What strategies or optimisations can counter the expected negative
factors like disturbances in the manufacturing process?

RQ5d What management strategies can be used to control a grid during
various cases?

8.2 Research Objectives

The objectives describe how the answers to the research questions shall be
achieved. To investigate the questions simulations will be created so that dif-
ferent aspects of the research can be investigated under controlled conditions.
The research will focus on two objectives:

RO1 Investigate the proactive opportunities that Grid Manufacturing can pro-
vide.

RO2 Test the efficiency of a grid, including the reconfigurable aspects, and
problems that might occur.

The discussion of both objectives will be split into two sections that each
discuss their own objective.

8.3 Proactive Top-Down Usage of a Grid

Reconfigurable Manufacturing Systems (RMS) are of interest to industry. The
possibility to quickly change a system provides the ability to have a shorter
time to market, and scale systems quickly according to current market needs.
This flexibility can be approached from different levels, e.g. from modulari-
sation of changeable hardware to the agility of the company. An important
aspect in this field is how flexible hardware can be controlled. Traditionally,

manufacturing systems are controlled from a centralised system in a hierar-
chical manner. A hierarchical or centralised controlled system gives the best
efficiency when all systems are predictable. When many disturbances occur, a
distributed system with heterarchical aspects (where individual manufacturing
systems act autonomously) could possibly achieve better results. Hence, for
the production of high-mix, low-volume products, a distributed system, where
autonomous systems are not dependent on each other, could be of interest.

Since equiplets are autonomous and can directly interact with products,
it is possible to use heterarchical control, where every equiplet is equal to
another. The products make use of each service the equiplets provide, de-
pending on the capabilities of the equiplet’s configuration. This provides the
possibility to manufacture a range of products on one grid of products, offer-
ing generic services. Automated manufacturing systems control architectures
can be divided into four basic types: centralised, hierarchical, modified hi-
erarchical, and heterarchical (Dilts et al., 1991). This section investigates if
manufacturing could be more efficient using some aspects of hierarchical or
heterarchical control systems. Since both have their advantages, the possibil-
ity to change between these approaches will be discussed, based on the current
demand. Different cases will be researched using a simulator where a number
of products are manufactured on a grid of equiplets.

In the literature (Leitão, 2009) and (Trentesaux, 2009) present a survey of
the intelligent and distributed manufacturing control systems using the emerg-
ing paradigms. Both note there is a lack of proven methodology or tools used
in industrial practice. Overall trends in various manufacturing sectors are the
move from hierarchical management structures to more levelled structures re-
ducing middle management, i.e. moving towards more modularity, autonomy,
and self-sufficiency, at the lowest possible levels (Mehrabi et al., 2000).

A good overview of Multi-agent scheduling is given by (Weerdt and Clement,
2009). (Brun and Portioli, 1999) argue that distributed systems have an edge
over centralised systems and propose a multi-agent system for simulation of
shop-floor scheduling. (Moergestel et al., 2012) proposes a multi-agent system
for manufacturing that produces a successful robust schedule against distur-
bances when it is producing at a high load.

Even though research in this area becomes more available, these contribu-
tions are often informal and fragmented. (Maturana et al., 2005) focuses on
modelling different agents in a manufacturing domain on JADE, where ma-
chines and AGVs are modelled as agents. The application leads to an agent-
based simulation with a reactive agent architecture. (Barbosa and Leitao,
2011) state that simulations are crucial in analysing behaviour during the de-
sign phase, and present a simulation designed to study agent-based control
systems for deployment into real operation.
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8.3.1 Simulation

To be able to research different approaches a number of cases will be investi-
gated by developing a simulator that can emulate a set of equiplets in a grid.
The simulation is used to determine the efficiency of a grid from a logistical
perspective.

The simulation consists of a number of systems and variables that are
calculated, which include a mechanism to calculate the time that it takes for
a product to travel between equiplets, a product generator, and a planning
algorithm. The planning algorithm determines which equiplet can perform
the step, based on its capabilities and schedule. This will be discussed later
in more detail.

Product Steps

The simulation makes use of equiplets and products. In Grid Manufacturing,
the products have a description of how they can be manufactured. This is done
by the ’Product Steps’, which have been described in Chapter 5. However, in
the simulator the product steps are not translated to specific instructions, but
are simplified for logistical use, i.e. the simulator checks which equiplet can
perform the step and uses this information to be able to schedule the product
step. This way the simulator can be used to determine the logistic efficiency
of the grid.

In general the same definition for Product Steps is used as defined by
(Moergestel, 2014), which defines product steps as follows: ”A production
step is an action or group of coordinated or coherent actions on a product,
to bring the product a step further to its final realisation. The states of the
product before and after step is stable, meaning that the time it takes to do the
next step is irrelevant and that the product can be transported or temporarily
stored between the two steps”.

In this sense the manufacturing process of a product can be characterised
in the simplest form by a tuple of product steps, e.g. < σ1, σ2, σ3, σ4, σ5 >
for a product with 5 product steps. However, while van Moergestel defines
the product steps as a standardised set of a predefined steps known by both
equiplet and product agents (Moergestel, 2014), this is slightly different in
this thesis, i.e. here a product step consists of an abstracted service and a
set of criteria, as discussed in Chapter 5. The change was a result of the
creation of reconfiguration, where different hardware modules were capable of
performing the same service, but with different limitations, e.g. two different
grippers can both pick up an object, but one might be stronger than the other,
being able to pick up a heavier object. Hence, an equiplet does not have a
set of standardised predefined product step types it is capable to perform.

Instead, its capabilities are based on a set of services and limitations, which
are checked against the service and criteria that are stored in the product step
of the product agent. As a result, this chapter will normally show either which
service the equiplet is capable of, or which service is requested by a specific
product step. For example, a product agent with three product steps could
be represented by a tuple: < σ1{serviceX}, σ2{serviceY }, σ3{serviceZ} >.

Simulator Mechanics

The simulator defines a number of equiplets with specific capabilities and
products that can be added dynamically over time. In general, a capability for
an equiplet is defined as the ability to perform the requested service and where
the criteria of the product step fall within the limitations of the equiplet.

Transport is taken into account by using average travel time over bidirec-
tional paths between equiplets, using distance information, which is calculated
with the following formula:

travelT ime = (abs(∆XaXb) + abs(∆YaYb))× travelT imePerHop (8.1)

Where a and b are equiplets, X, Y are coordinates, and travelTimePerHop
is the average travel time between neighbour equiplets.

Other features of the simulator are to add disturbances that delay or stop
an equiplet. It is also possible to start production of a batch. A batch is
an amount of identical products that are ordered at the same time. The
simulator also has a product generator, which can spawn random products
that have a random amount of different steps that have to be completed to
let it be produced. The product generator that spawns products can be set to
deliver a certain grid load. The grid load is calculated by measuring how many
equiplets are actually being active during a specific time frame. This makes
the product generator take into account which capabilities and equiplets are
available to estimate how many products it should create, to stress the grid
with a certain ’load’. The spawn system uses a seeded randomiser together
with a setting for the chance of delay of the product to make a more realistic
(changing) load which can at times create a spike of product demand.

Planning

Grid Manufacturing was originally designed to work with product agents and
equiplet agents that are fully cooperative. This makes the entire system heter-
archical, i.e. all systems are equal and have no planning systems that enforce
any hierarchical control. Van Moergestel describes a system where product
agents negotiate with the equiplets and are able to control their own manu-
facturing process (Moergestel, 2014). However, while this might seem logical
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service the equiplet is capable of, or which service is requested by a specific
product step. For example, a product agent with three product steps could
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The simulator defines a number of equiplets with specific capabilities and
products that can be added dynamically over time. In general, a capability for
an equiplet is defined as the ability to perform the requested service and where
the criteria of the product step fall within the limitations of the equiplet.

Transport is taken into account by using average travel time over bidirec-
tional paths between equiplets, using distance information, which is calculated
with the following formula:
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Where a and b are equiplets, X, Y are coordinates, and travelTimePerHop
is the average travel time between neighbour equiplets.

Other features of the simulator are to add disturbances that delay or stop
an equiplet. It is also possible to start production of a batch. A batch is
an amount of identical products that are ordered at the same time. The
simulator also has a product generator, which can spawn random products
that have a random amount of different steps that have to be completed to
let it be produced. The product generator that spawns products can be set to
deliver a certain grid load. The grid load is calculated by measuring how many
equiplets are actually being active during a specific time frame. This makes
the product generator take into account which capabilities and equiplets are
available to estimate how many products it should create, to stress the grid
with a certain ’load’. The spawn system uses a seeded randomiser together
with a setting for the chance of delay of the product to make a more realistic
(changing) load which can at times create a spike of product demand.

Planning

Grid Manufacturing was originally designed to work with product agents and
equiplet agents that are fully cooperative. This makes the entire system heter-
archical, i.e. all systems are equal and have no planning systems that enforce
any hierarchical control. Van Moergestel describes a system where product
agents negotiate with the equiplets and are able to control their own manu-
facturing process (Moergestel, 2014). However, while this might seem logical
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for the creation of different products in low volumes, it will likely not be effi-
cient when many similar products are used. Hence, it might be of interest to
investigate what happens if not only ’heterarchical’ control is used, but also
’hierarchical’ control that enforces specific use of all or some equiplets based
on a centralised planning algorithm.

To research heterarchical versus hierarchical control, a grid consisting of
9 equiplets is defined. Each of these equiplets has its own set of capabilities.
For this section only, the definition of a ’capability’ is simplified by ignoring
the limitations of the equiplet and the criteria of the product. As such the
’service’ which the product agent requests should only be matched with the
service that the equiplet can provide. Hence, the equiplet is capable to perform
the product step when the requested and provided service match.

Since equiplets are low-cost and single-purpose, the set of capabilities are
small, varying from 1 to 3 capabilities per equiplet. In the simulation, simple
products are created, based on three actions. To illustrate this we define three
different capabilities:

• α for the capability to add adhesive.

• β for rotational operations, i.e. bolting or drilling.

• γ for pick and place operations.

Now consider a product P1, with 4 product steps, defined by a capability
that can perform that step: < σ1{γ}, σ2{α}, σ3{γ}, σ4{β} >

This shows that product step σ1 can be performed by an equiplet that can
perform capability γ, product step σ2 by an equiplet with capability α, etc.

P1 could for instance be a sensor made out of four product steps. First the
electronic parts are placed in a casing, and secondly, adhesive is added to fix the
parts. Then the other half of the casing is placed on top of the adhesive, and
finally a screw is driven into the thread to fixate the sensor casing. To plan this
sequence, a product agent is created that represents the product. The product
agent will match all possible equiplets that can perform the necessary produc-
tion steps that need to be performed, i.e. it compiles a collection, matching
the capability of the equiplet with the required product steps. The resulting
collection can be shown, where Ex is an equiplet with a unique number; the
collection in this case is: {E1{σ2}, E2{σ4}, E3{σ1, σ3}, E4{σ2}, E5{σ1, σ3},
E6{σ4}, E7{σ2}, E8{σ4}, E9{σ1, σ3}}. Which shows that for this product,
Equiplet 1 (E1) is capable of perform product step 2 (σ2), Equiplet 2 (E2)
is capable to perform product step 4 (σ4), Equiplet 3 (E3) can manufacture
product step 1 (σ1) and product step 3 (σ3), etc.

In order to optimise production within the grid, batch scheduling is intro-
duced. Batch scheduling allows for reserving a section, i.e. specific number of

equiplets, of the grid to be used only for specific batches. This can be seen as
a classical assembly line controlled by a hierarchical entity (likely an agent)
that reserves these equiplets for specific use. When a reservation is made,
only products spawned in the annotated batch are allowed to schedule with
the reserved equiplets. When applying batch scheduling on the simulation,
reserving E1, E2, and E3 for batches, the collections become:

Batch production
{E1{σ2}, E2{σ4}, E3{σ1, σ3}}

Other products
{E4{σ2}, E5{σ1, σ3}, E6{σ4}, E7{σ2}, E8{σ4}, E9{σ1, σ3}}

Once these collections have been compiled, the product agent starts ne-
gotiating with the equiplets to be scheduled. This system was implemented
partly based on the work of Moergestel et al. (2012).

In the implementation of the simulation, the product agent inquires each
of the equiplets to evaluate whether or not the step can be performed with the
given parameters at the given equiplet. Once all equiplets have been queried
and matched, the actual planning begins. The first step in the planning process
is to create a production matrix. This matrix describes which equiplet could
best be scheduled for which product step of one specific product. In the
production matrix the rows represent the equiplets and the columns represent
the product steps. The matrix is filled with a score of where a product is best
scheduled. The higher the number, the better the choice. The calculation of
the number is determined by the following steps:

1. All equiplets that are capable of performing a step have their value raised
with 1.

2. Minimise the transitions between equiplets, in some cases one equiplet is
able to perform multiple sequential steps. To prevent excess transitions
between equiplets during manufacturing, all equiplets with sequential
steps have their value raised by the length of the sequence -1. A sequence
is defined as the number of steps that the product could perform at the
same equiplet.

3. Load balancing. Lower the score for capable equiplets that have a busier
schedule. The load of an equiplet is calculated by a % of how fully
they are scheduled in the time window that the product step can be
performed. The load during this time window is taken into account for
the capable equiplets, e.g. when fully scheduled and the equiplet is able
to perform 1 product step, i.e when the equiplet has a load of 100% in
this timeframe, this would lead to a -1.0 in the matrix, or a 10% load
would lead to add a -0.1 score for that equiplet. This will be explained
in more detail.
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for the creation of different products in low volumes, it will likely not be effi-
cient when many similar products are used. Hence, it might be of interest to
investigate what happens if not only ’heterarchical’ control is used, but also
’hierarchical’ control that enforces specific use of all or some equiplets based
on a centralised planning algorithm.
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electronic parts are placed in a casing, and secondly, adhesive is added to fix the
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E6{σ4}, E7{σ2}, E8{σ4}, E9{σ1, σ3}}. Which shows that for this product,
Equiplet 1 (E1) is capable of perform product step 2 (σ2), Equiplet 2 (E2)
is capable to perform product step 4 (σ4), Equiplet 3 (E3) can manufacture
product step 1 (σ1) and product step 3 (σ3), etc.

In order to optimise production within the grid, batch scheduling is intro-
duced. Batch scheduling allows for reserving a section, i.e. specific number of

equiplets, of the grid to be used only for specific batches. This can be seen as
a classical assembly line controlled by a hierarchical entity (likely an agent)
that reserves these equiplets for specific use. When a reservation is made,
only products spawned in the annotated batch are allowed to schedule with
the reserved equiplets. When applying batch scheduling on the simulation,
reserving E1, E2, and E3 for batches, the collections become:

Batch production
{E1{σ2}, E2{σ4}, E3{σ1, σ3}}

Other products
{E4{σ2}, E5{σ1, σ3}, E6{σ4}, E7{σ2}, E8{σ4}, E9{σ1, σ3}}

Once these collections have been compiled, the product agent starts ne-
gotiating with the equiplets to be scheduled. This system was implemented
partly based on the work of Moergestel et al. (2012).

In the implementation of the simulation, the product agent inquires each
of the equiplets to evaluate whether or not the step can be performed with the
given parameters at the given equiplet. Once all equiplets have been queried
and matched, the actual planning begins. The first step in the planning process
is to create a production matrix. This matrix describes which equiplet could
best be scheduled for which product step of one specific product. In the
production matrix the rows represent the equiplets and the columns represent
the product steps. The matrix is filled with a score of where a product is best
scheduled. The higher the number, the better the choice. The calculation of
the number is determined by the following steps:

1. All equiplets that are capable of performing a step have their value raised
with 1.

2. Minimise the transitions between equiplets, in some cases one equiplet is
able to perform multiple sequential steps. To prevent excess transitions
between equiplets during manufacturing, all equiplets with sequential
steps have their value raised by the length of the sequence -1. A sequence
is defined as the number of steps that the product could perform at the
same equiplet.

3. Load balancing. Lower the score for capable equiplets that have a busier
schedule. The load of an equiplet is calculated by a % of how fully
they are scheduled in the time window that the product step can be
performed. The load during this time window is taken into account for
the capable equiplets, e.g. when fully scheduled and the equiplet is able
to perform 1 product step, i.e when the equiplet has a load of 100% in
this timeframe, this would lead to a -1.0 in the matrix, or a 10% load
would lead to add a -0.1 score for that equiplet. This will be explained
in more detail.
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Load Calculation for an Equiplet

To illustrate the planning mechanism, consider a product that starts to be
produced at a certain time in the grid, which is called the release time, and
with a certain deadline before it needs to be produced. Now if a product
wishes a product step to be scheduled, e.g. product step 4 (σ4), the product
agent queries several equiplets and gives the equiplet agent its deadline and
possible arrival time. The arrival time is its release time + ∆, where ∆ is
the planned extra time that it will take the product to have the first three
product steps (σ1, σ2, σ3) executed plus the travel time it will take to the new
equiplet. This time period from the time it can arrive, i.e. releasetime + ∆)
until the product deadline, is called a ’time window’ or ’time frame’ in which
the product step can be performed.

To choose at which equiplet the product step of the example is produced
is partly based on how ’busy’ an equiplet is during this time window. This is
shown by the ’load’ of an equiplet. The load is the percentage of time that
product steps are scheduled in this time window, e.g. if an equiplet is planned
for 4 timeslots out of 10, during a specific time window, its planned load is
40%. A product can query several equiplets with the correct capabilities to
calculate the planned load for these equiplets at the selected time window.

Figure 8.1 shows an example of how the schedule for two equiplets could
look like. Showing when the equiplet has certain products planned.

Figure 8.1: Two examples of equiplet schedules.

In this example equiplet 1 has nearly no free time in the requested time win-
dow, which starts at arrival time (release time + ∆) and ends at the deadline
of the product. The equiplet will therefore communicate the expected load,
based on its planning, during the time window that the product requested.
In this case, equiplet 1 will respond that the expected load is 90% during the

Table 8.1: An example production matrix with load balancing, for a product
with 4 products steps, in a grid of 9 equiplets. Best candidates are shown in
bold.

Equiplet{capability} σ1 σ2 σ3 σ4
E1{α} 0.0 0.4 0.0 0.1
E2{β} 0.0 0.0 0.0 0.4
E3{γ} 0.4 0.0 0.4 0.0
E4{α} 0.0 0.8 0.0 0.0
E5{γ} 1.0 0.0 0.8 0.0
E6{β} 0.0 0.0 0.0 0.6
E7{α} 0.0 0.6 0.0 0.0
E8{β} 0.0 0.0 0.0 0.6
E9{γ} 1.0 0.0 0.9 0.0

requested time window. However, while equiplet 2 is busier in general, it ac-
tually has a lower load in the requested time window. Hence, equiplet 2 will
tell the product it has a 30% load during the requested window. As such the
product will favour E2, even though that equiplet has a higher overall load.

During normal operation, these steps are performed for all steps and
equiplets. The load windows are added to the production matrix by multiply-
ing the numbers based on capability and multiplying these with (1 − load).
This could for example result in a production matrix as shown in Table 8.1.

When using load balancing, Equiplet 1 (E1), has a score of 0.4 for step 2, as
can be seen in 8.1, this says it has a load of 60% during the time window that
the step could be planned. Hence, due to load balancing Equiplet 1 is suddenly
not the best option for step 2 any more, since instead of both equiplets 1 and
4 having a score of 1.0 (without load balancing), now Equiplet 4 has only a
20% load during this time (a higher score of 0.8, compared to 0.4 of equiplet
1). While other options are possible, this system does provide ways to load
balance between the equiplets, by giving a better score for equiplets that have
a lower load during the timewindow in which a product step could possibly be
performed.

Another optimisation could be to reduce the amount of time a product
travels within the grid. This can be achieved by calculating the different paths
through the grid over all steps, and applying these values to the production
matrix. Because the travel method was not designed yet at this time and as
such could not give a realistic schedule, optimising travel time was not taken
into account for the current schedule results.
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Load Calculation for an Equiplet

To illustrate the planning mechanism, consider a product that starts to be
produced at a certain time in the grid, which is called the release time, and
with a certain deadline before it needs to be produced. Now if a product
wishes a product step to be scheduled, e.g. product step 4 (σ4), the product
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possible arrival time. The arrival time is its release time + ∆, where ∆ is
the planned extra time that it will take the product to have the first three
product steps (σ1, σ2, σ3) executed plus the travel time it will take to the new
equiplet. This time period from the time it can arrive, i.e. releasetime + ∆)
until the product deadline, is called a ’time window’ or ’time frame’ in which
the product step can be performed.

To choose at which equiplet the product step of the example is produced
is partly based on how ’busy’ an equiplet is during this time window. This is
shown by the ’load’ of an equiplet. The load is the percentage of time that
product steps are scheduled in this time window, e.g. if an equiplet is planned
for 4 timeslots out of 10, during a specific time window, its planned load is
40%. A product can query several equiplets with the correct capabilities to
calculate the planned load for these equiplets at the selected time window.

Figure 8.1 shows an example of how the schedule for two equiplets could
look like. Showing when the equiplet has certain products planned.

Figure 8.1: Two examples of equiplet schedules.

In this example equiplet 1 has nearly no free time in the requested time win-
dow, which starts at arrival time (release time + ∆) and ends at the deadline
of the product. The equiplet will therefore communicate the expected load,
based on its planning, during the time window that the product requested.
In this case, equiplet 1 will respond that the expected load is 90% during the

Table 8.1: An example production matrix with load balancing, for a product
with 4 products steps, in a grid of 9 equiplets. Best candidates are shown in
bold.

Equiplet{capability} σ1 σ2 σ3 σ4
E1{α} 0.0 0.4 0.0 0.1
E2{β} 0.0 0.0 0.0 0.4
E3{γ} 0.4 0.0 0.4 0.0
E4{α} 0.0 0.8 0.0 0.0
E5{γ} 1.0 0.0 0.8 0.0
E6{β} 0.0 0.0 0.0 0.6
E7{α} 0.0 0.6 0.0 0.0
E8{β} 0.0 0.0 0.0 0.6
E9{γ} 1.0 0.0 0.9 0.0

requested time window. However, while equiplet 2 is busier in general, it ac-
tually has a lower load in the requested time window. Hence, equiplet 2 will
tell the product it has a 30% load during the requested window. As such the
product will favour E2, even though that equiplet has a higher overall load.

During normal operation, these steps are performed for all steps and
equiplets. The load windows are added to the production matrix by multiply-
ing the numbers based on capability and multiplying these with (1 − load).
This could for example result in a production matrix as shown in Table 8.1.

When using load balancing, Equiplet 1 (E1), has a score of 0.4 for step 2, as
can be seen in 8.1, this says it has a load of 60% during the time window that
the step could be planned. Hence, due to load balancing Equiplet 1 is suddenly
not the best option for step 2 any more, since instead of both equiplets 1 and
4 having a score of 1.0 (without load balancing), now Equiplet 4 has only a
20% load during this time (a higher score of 0.8, compared to 0.4 of equiplet
1). While other options are possible, this system does provide ways to load
balance between the equiplets, by giving a better score for equiplets that have
a lower load during the timewindow in which a product step could possibly be
performed.

Another optimisation could be to reduce the amount of time a product
travels within the grid. This can be achieved by calculating the different paths
through the grid over all steps, and applying these values to the production
matrix. Because the travel method was not designed yet at this time and as
such could not give a realistic schedule, optimising travel time was not taken
into account for the current schedule results.
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8.3.2 Top Down Management

It is possible to manage the grid in different ways, by adapting its standard
heterarchical structure, this is performed in this simulation using multiple
cases which utilise different management strategies. The simulation presents
two different cases, which are used as a proof of concept for these strategies.

• Case 1 will show a heterarchical strategy vs a hierarchical strategy, by
using an entity that reserves equiplets for batch production

• Case 2 will show what happens when switching from hierarchical control
to heterarchical control, including the use of disturbances, which might
happen in a realistic scenario when the planning might not always be
accurate.

The simulation is performed using products that use three different ca-
pabilities, and is performed over time, which is shown in timeslots. Every
product step takes a different time to perform. It takes 20 timeslots (relative
period) to use capability α, 10 timeslots to use capability β, and 5 timeslots
to perform capability γ.

Case 1A - Heterarchical Control

Figure 8.2 on the left shows a grid of equiplets that will be used in the first
case. In case 1 we try to investigate the difference between Grid A, as shown
in Figure 8.2 on the left, and Grid B, as shown in figure 8.2 on the right. The
only difference between these two grids is that with type B, three equiplets,
shown in orange, are specifically reserved for product batches. In this case
these reserved equiplets are not optimised, i.e. specifically configured, for the
batch product that is used in the simulation.

In case A, all equiplets are ’equal’, i.e. set for heterarchical control, and
all equiplets can be used by any product. To simulate these, 351 timeslots
(which represent 2 hours) are simulated, spawning 35000 random products, of
which 3600 products in a batch. The products use all three capabilities that
are available in the grid, and have a deadline of 86 seconds to be completed.
This deadline and the amount of products are chosen such as that the grid
performs at an estimated 80% average load, using the random product spawn
system. Figure 8.3 shows the load of all 9 equiplets.

Figure 8.3 shows, as expected, a high load on all equiplets. Basically the
equiplets with capability α have the highest load, which could be expected
since this action takes the longest to perform. This is made even clearer in
Table 8.2, which shows the average load over the shown time period for each
equiplet and the three equiplets with the same capability. This will be analysed
further after the next case.

Figure 8.2: On the left a type A 3 X 3 grid with heterarchical control and on
the right Grid B, also showing capabilities and the reserved equiplets for batch
processing in orange. While only B shows capabilities, they are the same for
both.

Figure 8.3: The load (1 represents 100%) of 9 equiplets in case 1A.

Case 1B - Hierarchical Control Through Reservation of Equiplets
for Batches

In case 1B we look at the same result while spawning products around an
estimated 80% load average, but then using three equiplets that are reserved
specifically for the batches

Figure 8.4 and table 8.3 show the load in this case. Equiplet 1, 2 and 3
are now reserved for batches. Equiplet 1 has a 100% load, as was also the case
in case 1A. This can be explained, since the α capability takes the longest
to perform. However, all other equiplets (both reserved and non-reserved)
have a lower average load. Figure 8.4 also shows that the reserved equiplets
have a stable load, since they are continuously manufacturing identical batch
products.

Table 8.2: Average load during shown time period, per equiplet and capability.
E1 E2 E3 E4 E5 E6 E7 E8 E9 α β γ
1.00 0.94 0.99 1.00 0.97 0.89 1.00 0.88 0.77 1.00 0.90 0.91
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• Case 2 will show what happens when switching from hierarchical control
to heterarchical control, including the use of disturbances, which might
happen in a realistic scenario when the planning might not always be
accurate.

The simulation is performed using products that use three different ca-
pabilities, and is performed over time, which is shown in timeslots. Every
product step takes a different time to perform. It takes 20 timeslots (relative
period) to use capability α, 10 timeslots to use capability β, and 5 timeslots
to perform capability γ.

Case 1A - Heterarchical Control

Figure 8.2 on the left shows a grid of equiplets that will be used in the first
case. In case 1 we try to investigate the difference between Grid A, as shown
in Figure 8.2 on the left, and Grid B, as shown in figure 8.2 on the right. The
only difference between these two grids is that with type B, three equiplets,
shown in orange, are specifically reserved for product batches. In this case
these reserved equiplets are not optimised, i.e. specifically configured, for the
batch product that is used in the simulation.

In case A, all equiplets are ’equal’, i.e. set for heterarchical control, and
all equiplets can be used by any product. To simulate these, 351 timeslots
(which represent 2 hours) are simulated, spawning 35000 random products, of
which 3600 products in a batch. The products use all three capabilities that
are available in the grid, and have a deadline of 86 seconds to be completed.
This deadline and the amount of products are chosen such as that the grid
performs at an estimated 80% average load, using the random product spawn
system. Figure 8.3 shows the load of all 9 equiplets.

Figure 8.3 shows, as expected, a high load on all equiplets. Basically the
equiplets with capability α have the highest load, which could be expected
since this action takes the longest to perform. This is made even clearer in
Table 8.2, which shows the average load over the shown time period for each
equiplet and the three equiplets with the same capability. This will be analysed
further after the next case.

Figure 8.2: On the left a type A 3 X 3 grid with heterarchical control and on
the right Grid B, also showing capabilities and the reserved equiplets for batch
processing in orange. While only B shows capabilities, they are the same for
both.

Figure 8.3: The load (1 represents 100%) of 9 equiplets in case 1A.

Case 1B - Hierarchical Control Through Reservation of Equiplets
for Batches

In case 1B we look at the same result while spawning products around an
estimated 80% load average, but then using three equiplets that are reserved
specifically for the batches

Figure 8.4 and table 8.3 show the load in this case. Equiplet 1, 2 and 3
are now reserved for batches. Equiplet 1 has a 100% load, as was also the case
in case 1A. This can be explained, since the α capability takes the longest
to perform. However, all other equiplets (both reserved and non-reserved)
have a lower average load. Figure 8.4 also shows that the reserved equiplets
have a stable load, since they are continuously manufacturing identical batch
products.

Table 8.2: Average load during shown time period, per equiplet and capability.
E1 E2 E3 E4 E5 E6 E7 E8 E9 α β γ
1.00 0.94 0.99 1.00 0.97 0.89 1.00 0.88 0.77 1.00 0.90 0.91
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Figure 8.4: The load of 9 equiplets in case 1B with reserved equiplets for
batches.

Table 8.3: Average load during shown time period, per equiplet and capability.
E1 E2 E3 E4 E5 E6 E7 E8 E9 α β γ
1.0 0.50 0.50 0.84 0.91 0.80 0.77 0.81 0.69 0.87 0.70 0.70

Analysis case 1

The results show that under the current conditions, reserving equiplets pro-
vides a stable, but also lower, load for the non-reserved equiplets compared
to not using reserved equiplets. The cause of this is the lower choice of free
equiplets to the random products, which leads to fewer possibilities where the
products can be manufactured in time and an expected lower throughput (fin-
ished products over time). However, as shown in Figure 8.5 there are more
differences. Figure 8.5A, at the top, shows that the number of active prod-
ucts in the grid is substantially higher when no equiplets are reserved, while
throughput, as shown in Figure 8.5B in the middle, is just slightly lower.
This can be explained by a shorter travel distance and therefore a faster com-
pleted product per equiplet. Figure 8.5C on the bottom also shows that some
equiplets were overloaded when using heterarchical control, which led to more
failed products, i.e. products that were unable to reach their deadline.

It can be concluded that heterarchical control has a potential higher through-
put in some cases, at the cost of production time per equiplet and potential
overload of the equiplets. Also, in a practical case using real equiplets, the
higher amount of active products in a grid with heterarchical control might
pose challenges for logistics, with possible delays due to the longer travel time.

Case 1 shows that both hierarchical control, where an entity reserves some
equiplets for batches, and heterarchical control, when all equiplets can be
equally used by any product, can have benefits. Hierarchical gives less chance
of failed products, a more predictable load on the system if there are many
batches, and has less active products in the grid. Hence, heterarchical control
has a potentially higher throughput when the reserved equiplets are not op-
timised for the batch product. This gives the grid the ability to manufacture
more products in the presented case at the cost of some products not meeting

Figure 8.5: A-top: Active products in grid. B-middle: throughput (completed
products). C-bottom: failed products that did not meet their deadline.

their deadline and predictability.

What was not shown is a test case where reserved equiplets would be
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reconfigured and chosen based exactly on the needs of the batch product,
since the results would be known beforehand. When there is enough demand
for the batch product, the reserved equiplets would run near 100% capacity,
while the other 6 equiplets would run like a standard grid of 6 heterarchical
equiplets.

The opportunity for this lies in the ability to quickly reconfigure equiplets
and reserve them when large batches are expected. This basically creates the
ability to use the high throughput for different (random) products and change
to the efficiency of standard line manufacturing when large batches of products
are expected to be made.

Case 2 - Error Behaviour - Switching From Hierarchical Reserved
to Heterarchical

Case 1 showed that both hierarchical control and heterarchical control with
reserved equiplets have different advantages. However, it is evident that dis-
turbances will have a larger effect on hierarchical control. As with any line, if
the reserved equiplets encounter any kind of disturbance the batches will stop
producing, which leads to the failure of all batch products until the problem
that initiated the disturbance can be resolved. However, since equiplets can
be reserved by a hierarchical entity, but are designed to be autonomous, it is
of interest to investigate if switching from hierarchical to heterarchical pro-
vides the ability to mitigate these disturbances. This could also open future
research for dynamic reservations when large batches are expected.

To investigate this case we take the same simulation settings as in the
previous case. This means an average of 80% load is maintained on the grid
by using random products, whilst spawning 1 batch product every 2 seconds.
The same grid was used as in case 1b, as was shown in Figure 8.2 on the right.
After timeslot 180, equiplet 3 encounters a disturbance and goes into an error
state which renders it unavailable for further production. As a result of the
disturbance, all reserved equiplets that are able (without error) will change to
a heterarchical state. The batches will also be able to make use of all available
equiplets.

At figure 8.6A the disturbance that stops equiplet 3, with capability γ,
can be clearly seen. This would normally stop all batch production. However,
in this case equiplet 1 and 2 are immediately switched to heterarchical mode
and batches are allowed to be rescheduled at any available equiplet in the
grid. While this could potentially lower efficiency (depending if the reserved
equiplets are efficiently chosen for the batch products), the problems of the
disturbance are mitigated since equiplet 5 and 9 immediately compensate for
the disturbance. This can clearly be seen in Figure 8.6C, which shows equiplets
5 and 9, which have a similar capability as equiplet 3, immediately increase

Figure 8.6: A-top left: load of the reserved equiplets, B-top right: load of
all equiplets. C-bottom left: all equiplets with capability γ, D-bottom right:
original heterarchical equiplets.

their load to a 100%. As shown in Figure 8.6D the impact on the equiplets
that were originally heterarchical is only slightly noticeable, since the overall
load is similar in comparison to the load before the disturbance.

Case 2 Analysis

Case 2 shows the use of being able to switch back to heterarchical manufac-
turing. Figure 8.7 shows how many products would be unable to reach their
deadline if the batches were not allowed to change to the heterarchical system
and if they would be allowed to.

Figure 8.7: Shows the amount of failed products.

As expected, many more products fail after the disturbance occurs. Switch-
ing to heterarchical mode clearly provides a lower amount of products that
are unable to meet their deadlines. However, some products still fail after
the disturbance due to the increased travel time and higher load of the other
equiplets that have to take over from the disabled equiplet.
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turing. Figure 8.7 shows how many products would be unable to reach their
deadline if the batches were not allowed to change to the heterarchical system
and if they would be allowed to.
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As expected, many more products fail after the disturbance occurs. Switch-
ing to heterarchical mode clearly provides a lower amount of products that
are unable to meet their deadlines. However, some products still fail after
the disturbance due to the increased travel time and higher load of the other
equiplets that have to take over from the disabled equiplet.
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8.3.3 Discussion

Case 1 might be considered slightly arbitrary, since the results are highly
dependent on a large number of variables including: size of grid, composition of
capabilities, required steps for the product, the deadline and their randomised
starting point. However, this was the intended point. In grid manufacturing,
products can be dynamically added to the grid and the simulation shows that
grid manufacturing can deliver this large range of possibilities. Since equiplets
are also reconfigurable in nature, it would be possible to quickly reconfigure
the hardware to accommodate large batches of identical products and form
an efficient line using the hierarchical entity that reserves equiplets for these
products. This would even be substantially more efficient than shown in case
1B, since here the reserved equiplets were not specifically updated for the used
batch product.

While the reserving of equiplets does make the grid more susceptible to
error, case 2 proves that the possibility to switch back to full heterarchical
use of all equiplets provides the ability to deal with disturbances. Considering
grid manufacturing was originally intended as a fully heterarchical way of
manufacturing, adding the hierarchical entity for reserving batches provides
many interesting possibilities.

8.3.4 Conclusion for Proactive - Top-down Approach

To answer the original research questions: this study shows that there are cases
that could benefit from both hierarchical and heterarchical strategies. Based
on the needs (size of batches, acceptable failure to meet the deadline and the
grid capabilities) choices can be made which strategy to choose. However,
disturbances do have a high impact on batch production, which can be miti-
gated through switching back to heterarchical control. Hence, the conclusion
is that it is of high interest to consider both the heterarchical and hierarchical
approaches to optimally utilise the possibilities of grid manufacturing.

This section impacts the way autonomous manufacturing systems are used
in a grid. While the original goal of grid manufacturing was to create the max-
imum amount of flexibility, this section shows that it is important to be able to
limit this flexibility to create a higher efficiency for any given situation. While
this might seem intuitively right, no systems in manufacturing are known to
utilise this possibility. Hence, it can be concluded that the development of a
hierarchical entity that can reserve equiplets for batch production is a valid
and interesting research subject for the future.

Considering the results of this section, and the generic possibilities that
grid manufacturing provides, it would be of interest to continue the research in
future work. Several steps that should be taken are: 1. Analyse a large amount

of cases to find a heuristic that could determine when reserving equiplets would
be beneficial. 2. Use the heuristic to develop an automatic system that could
select equiplets to be reserved when this would be beneficial. 3. Integrate this
system into the real (physical) grid using agent technology to test the practical
implications of the proposed system.

8.4 Reactive Aspects

This section focuses not on the proactive management in a hierarchical aspect
as the last chapter, but on how the grid manufacturing system could best
be utilised on a reactive basis, e.g. when a disturbance occurs, like when
an equiplet breaks down. It also investigates the effect and possibilities that
reconfiguration of the equiplets will provide.

8.4.1 Problem Description

Moergestel et al. (2012) researched scheduling mechanisms in an agent-based
manufacturing system. In this section we add the ability for manufacturing
systems to be reconfigurable, i.e. changed to provide different services. This
will change the capacity of the capabilities offered by the grid without interfer-
ence to other manufacturing systems. Both the dynamic start of new (types) of
products, changing (dynamic) job demand and the (reconfigurable) machines
themselves create possibilities to optimise the manufacturing process.

Within a system where both the product demands and manufacturing ca-
pacity are dynamic, it becomes difficult to use classic scheduling. This becomes
an even larger problem if disturbances are taken into account, which are likely
in a realistic scenario. Since products have to be transported with a dynamic
path and their location is also determined by computer vision, it becomes
increasingly hard to plan a schedule correctly. Hence, a new control strat-
egy is required to deal with these circumstances. This is also supported by
similar work. (Trentesaux, 2009) notes that it is important to research indus-
trial practices for intelligent and distributed manufacturing control systems.
(Barbosa and Leitao, 2011) and (Leitão, 2009) mentions that simulations are
crucial in analysing behaviour during the design phase and presents a simula-
tion designed of studying agent-based control systems for deployment into real
operation. (Duffie and Prabhu, 1994) identify that an agent-based architec-
ture can be a solution to adapt to production disturbances in manufacturing
systems in real time. This brings us to the research questions for this section.

1. RQ5b1 What impact do reconfigurable manufacturing systems have on
production efficiency for high-mix, low-volume production?

2. RQ5b2 How do disturbances impact dynamic manufacturing systems?
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3. RQ5c What strategies can counter the effect of disturbances?

8.4.2 Platform Description

The REXOS platform as described in Chapter 6 is used to answer these re-
search questions. To be able to understand the approach, some aspects of
REXOS will be explained here. This includes the Product Step Matching
algorithm that considers if the (abstract) description of a physical action in
the manufacturing process, the product step, can be performed by a specific
equiplet. The matching of the product steps that the product needs to be
manufactured and the equiplet that is capable to perform them is done as
follows:

Algorithm 1 Product Step Matching.

for all σ ∈ Pi do
(s, c) ← σ
E ← searchEquiplets(s)
Ecapable := {}
for all e ∈ E do

if Ce(σ) then
Ecapable := Ecapable ∪ {e}

end if
end for

end for
travelT imes := retreiveTravelTimes(Ecapable)
productionPath := schedule(Ecapable, travelT imes)

Where Pi is the product that will try to find the equiplets that are capable
to execute its product steps (σ). The s is the service and c the criteria of
the product step. The subroutine searchEquiplets returns a set of equiplets
that provide the services given by the Directory Facilitator. After this the
setEcapable is cleared. The Ce provides a set of capabilities for all equiplets;
this is checked for every product step to see if it can perform the service s with
criteria c. In reality this is implemented as a subroutine that checks the service
and criteria of the product step against the provided service and limitations of
the equiplet to determine if it is ’capable’ to perform the step. If the equiplet
is capable to perform the step it is added to the Ecapable set. After that the
traveltime and productionPath is determined by the retreiveTravelTime and
schedule subroutines.

8.4.3 Hypothesis

In the current approach each equiplet is set to act as equal (heterarchical)
(Telgen et al., 2014), i.e. all equiplets and products act autonomously without
a higher form of management and/or optimisation. An event-based simulator
has been developed that runs alongside REXOS and simulates external events
to test several cases. The hypothesis is that when manufacturing a diversity of
products the grid will be able to adapt to the production need and as such can
be used more efficiently. However, there are many influences on the efficiency
of a reconfigurable system.

In the current section the following cases are investigated:

• Reconfigurable vs. non-reconfigurable systems

• Influence of variable (stochastic) processing times for product completion

• Effect of Rescheduling and Queue Jumping

• Influence of manufacturing system breakdowns

8.4.4 Mechanics

In Grid Manufacturing a number of processes and mechanics can be used.
Systems are reconfigured by a reconfiguration procedure. The reconfigura-

tion procedure changes the equiplet with the lowest load towards an equiplet
type that has the highest load. The procedure is only performed when there
are two equiplets of the same type with the lowest cumulative load under a
certain threshold.

Variable (stochastic) processing time stands for the time that is required for
the product to be completed. Breakdowns are occurrences that delay or stop
the manufacturing process at one equiplet, e.g. when a mechanic has to clear a
jam of the filament at a 3D printer (like a paper jam in a normal printer, both
happen quite often in reality). It would be ideal to predict the exact processing
and travel times such that there will never be any disturbance in the schedules.
In real situations, variances in processing times always occur. These can either
happen because of the dynamic nature of a manufacturing grid, that is to say:
production time can take longer since the exact processing time is unknown,
i.e. it cannot be exactly predicted when a product step for this specific product
performed at a specific equiplet using a specific configuration is completed. Or,
problems can occur during transport or breakdowns of the equipment.

Rescheduling is a procedure in which a product will reschedule its remain-
ing product steps, i.e. release the time slots and re-initiates its scheduling
behaviour. It will reschedule whenever the product agent notices that the
product step will not arrive at the next equiplet in time.
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jam of the filament at a 3D printer (like a paper jam in a normal printer, both
happen quite often in reality). It would be ideal to predict the exact processing
and travel times such that there will never be any disturbance in the schedules.
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Queue Jumping is a procedure where products that are available, i.e. have
arrived, at the equiplet can be started before they are scheduled. This can
happen in the case that the next scheduled product has not yet arrived, but
a product which is expected at a later time is already available before it is
scheduled. Queue Jumping might be an important improvement since prod-
ucts that are not finished in time will delay all other products in the queue.
It can result in a cascade of equiplets that are waiting for their scheduled,
but delayed, products to arrive. Queue jumping solves this problem by giving
products that have already arrived priority over products that are scheduled
to start next, but have not arrived. The product that is too late is placed
behind the current product that starts. Which might result in products that
are not completed within their expected completion time. These are called
overdue products.

8.4.5 Simulation Model

A discrete-event simulation model (Kelton and Law, 2000) is developed for
the purpose of investigating the cases. After each occurring event the state of
the system changes to a new situation.

Assumptions

The following assumptions are made about the grid: equiplets only know the
average time it takes to perform a job and not the exact time a priori. Vari-
able processing times are decided using an average processing time for a spe-
cific type of product step with an offset based on an exponential distribution.
Equiplets can either break down or require maintenance; there is no distinc-
tion within the simulation between those two. All equiplets have an identical
chance of breaking down and an equal average time required to be repaired.
No distinction is made between the causes of down time. Storage and trans-
port capacity are not taken into account. Travelling between equiplets always
succeeds and takes a certain standardised time per distance to be covered.

The order in a production path is important, as to manufacture a product
its product steps are dependent on each other. We assume that each prod-
uct step requires the completion of the step before, i.e. there is no parallel
production for a single product.

Events

There are 7 different events generated for the simulation: product creation,
product arrived by equiplet, product started, equiplet finished with a job,
equiplet breakdown, equiplet is repaired, reconfigured, and a done event. The
transitions and events between these states are described in Figure 8.8.

Figure 8.8: All simulation events.

• The first event that occurs when starting the simulation is a product
creation event. The event triggers the creation of a product agent with
a certain set of product steps and a deadline. When the agent manages
to schedule his product steps, a product arrived event is added to the
event stack.

• A product arrived event will trigger the product agent to let it know it
has arrived at the scheduled equiplet.

• A started event is triggered at the latest time that the product should
have been started. If this is not the case, the product knows that it has
to reschedule the remaining product steps.

• An equiplet is finished with a product step. It informs the relevant
product agent with the finished event. If the product travels to the next
equiplet, the simulation will schedule a product arrived event.

• The simulation gets a breakdown event when an equiplet breaks down
or is in need of maintenance.

• The simulation gets a repaired event when the equiplet can continue its
activities. After an equiplet has been repaired a new breakdown event
is scheduled.
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• A reconfig event is scheduled when the equiplet can be shut down and re-
configured into a new configuration. The event will trigger the change of
capabilities and therefore to register its new services with the Directory
Facilitator.

• The done event will end the simulation. The required procedures such as
saving the statistics and taking down the living agents are executed. The
planning for this event is performed at the beginning of the simulation
to ensure a specific runtime.

Simulation - Equiplet Interfaces

Interfaces were made to simulate external or internal events. For the equiplet
the state transitions caused by these are shown in Figure 8.9.

Each of the simulation events needs to be completely handled before han-
dling the next event. This would be different in a real-time system. The
equiplet can be in the idle, busy or error state. Besides the hardware states,
the equiplet also has three additional simulation states: ready to execute a job
as a product arrived while the equiplet is broken down; the equiplet should
have been finished with the job but has broken down in the meantime; and
the equiplet is repaired after having broken down but does not know when
the job would have been finished. As it is not possible to look into the future,
equiplets need to make a distinction between the state ’busy’, when they are
active and performing a job, or when it continues with a job after having been
broken down. This to change the according time that a product is completed,
since a breakdown will delay the completion time. The same goes for the
distinction in the error state, when the equiplet would have been finished or
when a product arrived while being broken.

Case Parameters

The current cases are performed with a 24 equiplet setup, with 4 different
capabilities. The setup has an even distribution of capabilities. However, the
time it takes to complete a product step is different. In this case the average
production time for σ1 = 15, σ2 = 15, σ3 = 30, σ4 = 120. As is common
in manufacturing simulations the time between product arrivals is calculated
using an exponential (Poisson) distribution with a random mean variable. In
the simulation target utilisations are used to determine how many products
should be created at the grid. A ’product spawn’ system creates new products
based on the target utilisation. A 100% target utilisation would mean that the
equiplet under ideal conditions would have enough products to be working all
the time. The time between arrivals, (inter-arrival times) of products follows
a Poisson distribution with a mean depending on the target utilisation of the

Figure 8.9: State Transition Diagram for equiplets.

grid. Where the utilisation ρ is the expected service time E(S) divided by
the expected inter-arrival time. For the current case the optimal utilisation
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ρ = 0.8 is used, based on (Moergestel et al., 2012).

ρ =
E(S)

E(A)
(8.2)

Each product spawned by the simulation has 20 random product steps.
The expected service time of a product is the average production time times
the number of product steps. For each run there is a start-up period that is
not taken into account for the results; this is done to simulate a continuous
production environment.

The reconfiguration procedure can be started when two equiplets with the
same capability have a cumulative load under 110%. If the cumulative load
is over 110% it is not possible to reconfigure, since this will lead to a large
shortage of equiplets that can perform the same specific capability. If the
reconfiguration is triggered, the equiplet with the lowest load will change its
reconfiguration to a configuration that is able to perform the same capability
as the equiplet with the highest load in the grid.

8.4.6 Implementation

The simulation has a Graphical User Interface (GUI) which shows a large
amount of information. Including the status of every equiplet, products in the
grid, statistics, etc. Figure 8.10 shows the GUI for the simulation.

8.4.7 Results

All data is based on the average result of 10 runs. The results are given in
two different subsections, first to describe the effects of reconfiguration, and
second the effects of disturbances in the grid.

The Effect of Reconfiguration

Shown in Table 8.4 is the average load of the entire grid (average of all
equiplets), the amount of products that have been finished in the time pe-
riod. Also shown is the average time it takes for a product to be finished from
its start, this is called the Production Time, and the amount of products that
have failed to schedule. Failure happens in cases that the product is unable
to create a schedule that finishes before the product deadline.

The results show that when producing a variety of products, reconfigur-
ing the manufacturing machines proves to be much more efficient. This was
expected, since product steps take a different amount of time to complete,
and as such a bottleneck will likely occur. However, when systems can be
reconfigured the grid will automatically adapt to the demand by changing its
least used equiplet into one with a configuration that has a high demand. This

Figure 8.10: The GUI of the Simulation, showing multiple equiplets.

leads to the completion of more products and less products that are unable to
be created before their deadline.
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Table 8.4: non-reconfigurable vs. reconfigurable systems.

Load
Products
Finished

Average
Production

Time

Products
Failed to
Schedule

Base 35% 10637 9546 10631
Reconfig 77% 20636 5879 617

Figure 8.11 shows the result over time, by showing the average load of
all equiplets. Clearly the reconfigurable systems adapt with the demand and
saturates to a 77% load, which gives a 94% increase in products finished. Drops
in load with the reconfigurable systems are due to the changeover time when
an equiplet has to be reconfigured to be able to provide another capability to
the products.

Figure 8.11: Results of one run with none vs. reconfigurable systems over
time.

When the grid reaches the theoretical optimum (for the average product)
there are still changes in configuration and therefore capabilities, leading to
a reduced utilisation of the grid. This is due to the randomness of the re-

quired capabilities of the products. At times it might seem more efficient to
change the configuration of an equiplet, but after the reconfiguration occurs
the demand is changed back in a way that the original configuration was more
effective. Since the demand and configuration keep changing based on the cur-
rent demand it might keep changing all the time. However, using statistics it
might be possible to more accurately predict the efficiency of a reconfiguration
action in the future.

It is possible that the product fails to schedule all of its product steps, i.e.
it does not enter the grid due to the high utilisation that makes it impossible
to schedule all steps within the deadline. In this case using reconfiguration,
products that are unable to schedule within their deadline are limited to 2.9%.
It can also occur that a product fails to meet the deadline; this is because
rescheduling keeps occurring due to a changing demand, which could lead to
delays.

The Effect of Disturbances

To show a more realistic case, the effect of disturbances have to be taken ac-
count. Hence, the effects of stochastic/variable completion time, and equiplet
breakdowns will be added to the same simulation cases.

Table 8.5 shows the effect of disturbances with three different cases, which
are all reconfigurable. This is compared with only stochastics turned on, as
well as with stochastics and breakdowns turned on. To counter the effects
of these disturbances they are shown with the effect of a base setting (no
rescheduling or queue jumping), rescheduling turned on, and queue jumping
turned on together with rescheduling. Stochastic production completion and
breakdowns also introduce a new effect, i.e. products that can be scheduled
within their deadline, but are unable to be completed within their scheduled
time. These are considered overdue. Both breakdowns and the stochastic
completion time greatly affect the amount of products that can be finished.
Together they halve the amount of products that can be completed in the
current case. Both queue jumping and rescheduling counter these effects,
almost doubling the amount of products that can be manufactured within the
same time frame when these disturbances occur.

The impact of stochastics and breakdowns prove to bring the products
created under the level of the original base configuration (without reconfigu-
ration). Rescheduling brings the load from 35% to 57% and queue jumping
brings this up to 73%.



Validation and Utilisation |

199 

8

Table 8.4: non-reconfigurable vs. reconfigurable systems.

Load
Products
Finished

Average
Production

Time

Products
Failed to
Schedule

Base 35% 10637 9546 10631
Reconfig 77% 20636 5879 617

Figure 8.11 shows the result over time, by showing the average load of
all equiplets. Clearly the reconfigurable systems adapt with the demand and
saturates to a 77% load, which gives a 94% increase in products finished. Drops
in load with the reconfigurable systems are due to the changeover time when
an equiplet has to be reconfigured to be able to provide another capability to
the products.

Figure 8.11: Results of one run with none vs. reconfigurable systems over
time.

When the grid reaches the theoretical optimum (for the average product)
there are still changes in configuration and therefore capabilities, leading to
a reduced utilisation of the grid. This is due to the randomness of the re-

quired capabilities of the products. At times it might seem more efficient to
change the configuration of an equiplet, but after the reconfiguration occurs
the demand is changed back in a way that the original configuration was more
effective. Since the demand and configuration keep changing based on the cur-
rent demand it might keep changing all the time. However, using statistics it
might be possible to more accurately predict the efficiency of a reconfiguration
action in the future.

It is possible that the product fails to schedule all of its product steps, i.e.
it does not enter the grid due to the high utilisation that makes it impossible
to schedule all steps within the deadline. In this case using reconfiguration,
products that are unable to schedule within their deadline are limited to 2.9%.
It can also occur that a product fails to meet the deadline; this is because
rescheduling keeps occurring due to a changing demand, which could lead to
delays.

The Effect of Disturbances

To show a more realistic case, the effect of disturbances have to be taken ac-
count. Hence, the effects of stochastic/variable completion time, and equiplet
breakdowns will be added to the same simulation cases.

Table 8.5 shows the effect of disturbances with three different cases, which
are all reconfigurable. This is compared with only stochastics turned on, as
well as with stochastics and breakdowns turned on. To counter the effects
of these disturbances they are shown with the effect of a base setting (no
rescheduling or queue jumping), rescheduling turned on, and queue jumping
turned on together with rescheduling. Stochastic production completion and
breakdowns also introduce a new effect, i.e. products that can be scheduled
within their deadline, but are unable to be completed within their scheduled
time. These are considered overdue. Both breakdowns and the stochastic
completion time greatly affect the amount of products that can be finished.
Together they halve the amount of products that can be completed in the
current case. Both queue jumping and rescheduling counter these effects,
almost doubling the amount of products that can be manufactured within the
same time frame when these disturbances occur.

The impact of stochastics and breakdowns prove to bring the products
created under the level of the original base configuration (without reconfigu-
ration). Rescheduling brings the load from 35% to 57% and queue jumping
brings this up to 73%.



| Chapter 08

200 

Table 8.5: reconfiguration results.
Load Products Finished

Queue Jumping base resched. qj base resched. qj
Reconfig 77% 77% 79% 20636 20685 20924
Reconfig + Stochastics 36% 59% 76% 9693 16380 20830
Reconfig + Stoch. + breakdowns 35% 54% 73% 9295 15089 19654

Production Time to Schedule
Reconfig 5879 15089 3283 617 578 397
Reconfig + Stochastics 11224 17161 5508 11567 4691 434
Reconfig + Stoch. + breakdowns 11593 16940 8383 11971 6024 1540

Overdue
Reconfig 0 0 101
Reconfig + Stochastics 5879 14063 138
sReconfig + Stoch. + breakdowns 5759 12608 607

8.4.8 Discussion

The cases in this Chapter are not meant as validation for overall efficiency,
since that would require many more cases. However, they are used as a proof
of concept to show how Grid Manufacturing can be utilised and to provide
solutions to new unknown factors that come with the flexibility of Grid Man-
ufacturing. Dynamic production for high-mix, low-volume is a difficult topic
to research. Most papers simplify this approach by removing unknown factors
like disturbances and the variation of the production time that likely occurs
when using reconfigurable machines with similar capabilities (Brun and Por-
tioli, 1999; Komma et al., 2011; Barbosa and Leitao, 2011). In the current
study these are taken into account to validate a more realistic proof of con-
cept that is made possible by the abilities of grid manufacturing. This is
important, because when dynamically producing a range of products the ef-
fect of disturbances proves to be substantial. However, it is a challenge to
provide realistic parameters. Since both the number and type of products
are random, it is difficult to optimise the configuration of the manufacturing
systems to an optimum. This also influences the comparison between recon-
figurable and non-reconfigurable systems. Clearly reconfigurable systems will
have the ability to better adapt to the current demand. While this is viable for
a case with random products, results can vary strongly based on the case used,
e.g. cases where batches are produced. However, the results show that it is
likely that reconfigurable systems will prove more effective when dynamically
manufacturing high-mix, low-volume products. So while this simulation on
top of the control system for grid manufacturing clearly proves more efficient
it is more interesting to see the effects of other disturbances and the strategies
that counter these, which was shown with queue jumping and reconfiguration.
Especially stochastic production completion has a large impact on the prod-
ucts that can be completed. This is because of a number of factors, including
the unknown hardware where the product will be produced, the speed with

which the vision system will find the arrived product, and disturbances that
will occur in the manufacturing process itself. As such, it is impossible to
exactly follow the schedule, which will have a large impact on other products
as well. Rescheduling and queue jumping minimise these effects.

Basically, the goal of the current chapter was not so much to prove the
efficiency to the grid, but to show the possibilities of grid manufacturing and
how to deal with practical problems that occur when using such a dynamic
production system.

8.4.9 Conclusion Reactive

Grid manufacturing opens the possibility to dynamically manufacture a range
of high-mix low-volume products. However, this type of manufacturing also
introduces new effects that greatly affect the overall performance. Reconfig-
urable systems can be efficient when manufacturing a large variety of products
at random. However, in a real case the impact of disturbances becomes very
important. Disturbances show to have a high impact, because of the stochas-
tic and dynamic behaviour of the grid. The current section shows that it is
important to use strategies that adapt to these disturbances. The disturbance
results show how important it is to add these realistic factors to evaluate the
performance of a dynamic production grid. Disturbances have a large im-
pact on the efficiency of the grid. However, queue jumping and rescheduling
behaviour show that these problems can be effectively mitigated.

What can be concluded is that manufacturing systems using agent-based
technology can anticipate disturbances and reconfigure systems on demand.
Which brings dynamic automated production for high-mix, low-volume closer
to be a realistic business for industry.

8.5 Future Work

The current simulations have been used to show how Grid Manufacturing could
possibly be used and organised. It shows the possible effects in realistic proof
of concept cases and how to counteract them. However, many opportunities
are still open to be explored in the future, among them:

• The parameters used in current cases are only used to illustrate the
current effects and use of a grid of equiplets. However, they might be
optimised and changed to encompass a full range of different cases and
validate the real economical efficiency of grids. Since this research is
currently mainly focused on the technical capabilities of Grid Manufac-
turing this is considered to be out of scope. However, in the future
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• The parameters used in current cases are only used to illustrate the
current effects and use of a grid of equiplets. However, they might be
optimised and changed to encompass a full range of different cases and
validate the real economical efficiency of grids. Since this research is
currently mainly focused on the technical capabilities of Grid Manufac-
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it could be interesting to use similar simulation to explore the matter
further.

• The simulation could also be integrated into the REXOS system, much
like the Gazebosim has been integrated, which could give a number of
opportunities:

– To use statistical data to create a prediction when an equiplet
should be reconfigured. This could be done by analysing current
and expected demand based on data analytics and give a precise
estimation when the cost of reconfiguring an equiplet would be ef-
ficient.

– The simulation could automatically chose management strategies
and optimise schedules for both products and equiplets.

• Scheduling is mainly placed out of scope for this research, since, while
important, it does not have a fundamental effect on the technical ca-
pabilities of the grid. However, this research and the simulator that
was developed can be used to quickly analyse scheduling efficiency and
improve Grid Manufacturing even more.

8.6 Conclusion

The main Research questions for the current chapter were:

RQ5a - How can we validate the system in different cases? A simulation
can be used that emulate a diversity of cases. In the current simulation a num-
ber of possibilities are validated that Grid Manufacturing provides, including
reconfiguration, a mix of organised control with a hierarchy or heterarchy, and
the ability to adapt to disturbances in the manufacturing process.

RQ5b - What are the unique factors that influence the production efficiency
of a grid? Reconfiguration and disturbances like breakdowns are important
factors. The reactive simulations show that Grid Manufacturing is efficient
when high-mix, low-volume products are produced. However, the dynamic
behaviour does greatly impact the efficiency. This can be mitigated by intro-
ducing new strategies for scheduling and adapting to the circumstances.

RQ5c - What strategies or optimisations can counter the expected negative
factors like disturbances in the manufacturing process? Queue jumping and
rescheduling were introduced to counter the negative effects. These proved to
mitigate the problems efficiently.

RQ5d What management strategies can be used to control a grid during
various cases? Grid Manufacturing was designed to be a completely heter-
archical system that was self-managed by the product and equiplet agents.

However, flexibility could always be limited on demand, by creating a less
flexible system with hierarchical optimisations. In case of larger batches, or
different priorities for the production this could be used to adapt the Grid for a
specific purpose. While not designed for mass production of similar products,
equiplets could be used as a classic manufacturing line. Using the grid this way
would limit some of its flexibility, but with their low-cost design and flexible
setup it could also be an efficient way to quickly install a new manufacturing
line for larger batch production.
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Discussion

“We are trying to prove 
ourselves wrong as quickly 
as possible, because only 
in that way can we find 
progress.”

― Richard Feynman
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Discussion

9.1 General Evaluation

This entire study has been about the technical possibilities for automated
manufacturing of differentiated products, by using the concept of Grid Man-
ufacturing. This starts in the first main Chapter 4, by investigating how to
flexibly localise and handle objects. Next reconfiguration is discussed in Chap-
ter 5. This adds ways to change hardware and discusses how products make
use of these new services. This brings flexibility not only in how to use the
equiplets, but even to the hardware configuration itself by using the Hardware
Abstraction Layer and creating a data-driven system that could adapt at any
time and on demand. Using the generic methods of these two chapters the
architecture has been founded in Chapter 6. While this chapter was mainly
about development, between the lines some flexibility could be found, for in-
stance ’product family engineering’, which makes it easier to reuse objects,
and how to use hybrid architecture to combine both performance and more
intelligent systems. Besides Multi-Agent Systems, it also introduced Robot
Operating System, a middleware that makes use of autonomous nodes. When
the architecture was completed it was time to investigate essential aspects
of the systems to make it possible to use it in industry. This was done in
Chapter 7 that showed a standardised state system and simulators that could
predict collisions before they can happen. Finally Chapter 8 zoomed out on
the entire grid, making use of all the systems and tested them using simula-
tions, including logistics, new ways to organise production and strategies to
use reconfigurable systems.

While all closely connected, these subjects come from a diverse range: from
hardware control to multi-agent systems and logistic control problems. How-
ever, in a similar sense as Leitão (2009) discusses in his survey, to prove this
technology to industry, it is essential to consider practical problems together
with the fundamental ones. This is the reason why this study includes ele-
ments like safety and an experimental platform. These make it possible to
test the more generalisable elements, like the 6D localisation approach and
the Hardware Abstraction Layer approach for reconfiguration. However, the
requirement for a working implementation introduces a broad spectrum of
practical and multi-disciplinary problems. As such, substantial energy has
been put into pragmatic problem solving. This is a common challenge for de-
sign research, as Horvath et al. (2013) also mentions. It is difficult to achieve
the rigour of the ’hard’ sciences in this field. However, Horvath did mention
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possibilities to articulate and increase the methodological structure. In ret-
rospect to this thesis it can be said that the applied and multi-disciplinary
approach did provide extra challenges. These challenges create a difficult bal-
ance between showing the practical ’working’ methods on one hand and the
possibility to limit the scope to create a more rigorous model on the other
hand. The goal was to make applicable systems for industry. Hence, at times
it was chosen to take a pragmatic approach that would create a working system
that can be used for future experimentation. In retrospect this meant that at
times the choice was made to make a more complex applied system that was
usable instead of creating a simpler and generalisable model that would not
be applicable in the near future. Since several working proofs of concept are
now available, this can be used in the future for further development, research,
analyses and generalisation.

9.2 Review of the Research Design Parameters

RP1. Machines can effectively provide generic services that can be
used by different kind of products that are not known a priori, i.e.
new products can be built on demand by machines never specifi-
cally designed for this product. This objective was reached by creating
the Hardware Abstraction Layer infrastructure, which was discussed in Chap-
ter 5. The HAL makes this possible by using the Knowledge Database to
translate the abstract standardised ’product steps’ to specific instructions for
the hardware configuration that has been scheduled by the Product Agent.

One of the HAL’s drawbacks is that it is a complex system with an im-
plementation of more than 25 software classes. However, since it holds an
important functionality this seems unavoidable at the moment. Nevertheless,
what could be done is develop a number of tools that simplify the use of the
HAL and improves the documentation of how it can be used and maintained.
This could subsequently improve maturity and simplify its use. However, since
this is a more practical solution than a fundamental one this was given a lower
priority for this study.

RP2. Computer vision is an important part of flexible manufac-
turing and can be simplified by making use of diverse data that is
already available in the system. This was shown in Chapter 4. Machine
Vision in general is a complicated problem that commonly has to be tailored
for every specific application. However, this problem is greatly simplified by
making use of the models and information available with the Cyber-Physical
approach. Just two 2D cameras can now accurately determine the positioning
of Objects.

While the proposed system is rather elegant, it does only work with objects

that have a model. Other problems like unknown objects (humans nearby the
machines, for instance) are not taken into account. In future studies this could
be added to not only identify known models, but also recognise ’unknown’
objects. While these cannot be localised with this system it could provide
more safety and give information about the environment. The current system
also has limitations, which were discussed in more detail in Chapter 4.

RP3. The hardware of a machine can be reconfigured without
the need of reprogramming the software. This was shown in Chapter
5. The Hardware Abstraction Layer has a number of factories that can create
capabilities and modules in a way that is purely ’data-driven’. By this design
any new system can be added to the configuration purely based on the abilities,
i.e. mutations, that the module can perform. Together with the ability to start
and stop a modules software on demand with the use of ROS nodes, as shown
in Chapter 6, a system is created where hardware modules can be reconfigured
without the need for reprogramming.

Considering RP3, what could be improved for the Hardware Abstraction
Layer, is the way it can be adapted. In the future a tool should be made
that can easily access the Knowledge Database and can add or remove newly
developed modules or product steps. This is one of the drawbacks of the
current implementation. While the back-end (the HAL) itself is mature, the
front-end is not. It could be possible to make a Graphical User Interface that
has a good User Experience (UX) design, e.g. such that the reconfiguration
process itself would be nothing more than just scanning a barcode. The GUI
could also provide means to change variables into the Knowledge Database
and give more status information about the configuration. At the moment
these values are hidden into the back-end, making it more difficult to change
details or test new modules.

RP4. The use of a simulator and transparent software control
using standardised states can increase safety for reconfigurable man-
ufacturing machines. Chapter 7 discusses the risks that are introduced by
the use of reconfigurable manufacturing machines in combination with the
uncertainties of handling a priori unknown products. These risks have to be
mitigated. The use of a simulator and the state/mode system that define
behaviour and predict possible problems does increase safety.

While the simulator and software control system do increase safety, they do
increase complexity and cost to the development of new reconfigurable mod-
ules. As discussed in RP4 reconfigurability, reprogramming is not required for
the reconfiguration process itself. However, the development of new hardware
modules do require more work to be developed. An accurate dynamic model
has to be developed that can be used for the simulation and there has to be
a clear definition of what a system is allowed to do within a state. Hence,
the development of new reconfigurable modules are more complex than with
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classic manufacturing means and therefore new hardware modules has to be
tested thoroughly to ensure safe operation.

RP5. Using cooperating agents in a grid in a non-hierarchical,
i.e. heterarchical manner can be a flexible and efficient way to man-
ufacture products in low quantities. Chapter 8 introduced new ways to
organise a grid-like system and tests these by using various self-developed sim-
ulators. This is one of the strong points of autonomous systems, which might
be designed in a heterarchical fashion, but can easily be changed towards a
hierarchical efficient line or any other hybrid variation. Adapting towards the
current needs is therefore the key to make efficient use of these systems.

While several cases were discussed for RP4, this does not nearly cover all
opportunities. However, several dissertations would be required to research
all possibilities that exist for organisation modelling, especially if topics like
scheduling, transport logistics and optimisation strategies for reconfiguration
are taken into account. Also the efficiency, business strategies and cost studies
could be added here. However, this was placed outside of the scope of this
thesis. Here we just introduce the technical possibilities and ideas of how
to utilise them, in the hope they will be picked up for further studies in
multidisciplinary research groups and industry.
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Conclusion

“There’s nothing I believe 
in more strongly than 
getting young people 
interested in science and 
engineering, for a better 
tomorrow, for all humankind”

―Bill Nye
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Conclusion

10.1 Review of the Research Questions

In this section the research questions will be reviewed:
RQ1 - How can the detection and localisation of (previously un-

known) objects be simplified and generalised? Simplification of the
(6D) localisation problem has been done by using metadata that is available
in the grid. The use of the Cyber-Physical philosophy creates unique oppor-
tunities to do this. Since all systems in Grid Manufacturing have knowledge
of themselves, including their state, configuration, and even visual CAD mod-
els, they are able to provide rich data that increases accuracy and that can
be used to verify the results. For this purpose several tools were created that
can automatically generate images for matching purposes on demand, creating
a flexible approach to be able to identify and localise any product (or other
object) that has this data available. See Chapter 4 for more details.

RQ2 - Can reconfigurable systems be controlled without the need
to reprogram them for every new product or hardware module? This
can be done by making the system Data-Driven and using an architecture
where new entities can be started and stopped on demand. The combination
of these two elements are essential to do this. In this study we use the Multi-
Agent Platform JADE, and Robot Operating Systems which both are able
to do this. However, this involves numerous systems, the platforms, but also
a translation system so that the service can be used by products, and the
Hardware Abstraction Layer that is used to perform the configuration and
translation process by using the Knowledge Database. See Chapter 5 and 6
for more details.

RQ3 - What options are available to combine flexibility and per-
formance for software architecture in grid manufacturing? As dis-
cussed in Chapter 6, flexibility and performance are often not easy to com-
bine. However, Axiomatic Design dictates that when requirements conflict,
they should be decoupled. This is done by using a Hybrid Architecture that
uses two different platforms that each have their own strong points. Of course
the question then arises on how these platforms are defined and if this impacts
performance. These aspects have been discussed in more detail in this chapter.

RQ4 - What Risks are introduced due to the reconfigurable and
dynamic behaviour and how can they be mitigated? Grid Manufac-
turing is supposed to be agile, but agile also means volatile in this aspect.
Different configurations, different products and a continuously changing work-
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ing area make this a serious problem. However, this has been mitigated in two
manners. First by creating a standardised state system that provides clear
insight in the behaviour of the system. Secondly, the idea of Cyber-Physical
system is also applied by using the ’cyber’ world to test actions in the virtual
world, before actually attempting them in the real ’physical’ world. The com-
bination of these two make the system safer to use and lowers the risk that
come inherently with dynamic agile systems. See Chapter 7 for more details.

RQ5 - What is the best way to utilise the possibilities of an agent-
based manufacturing grid and therewith validate its efficiency? This
Research question is the hardest to answer, since efficiency is dependent on
the case and the current Grid Manufacturing proof of concept is designed
especially for automated flexibility, not to determine what the most optimal
utilisation would be. Since the current proof of concept is tailored on flexibility,
it could be approached in many ways. However, Chapter 8 does create several
simulations to test the efficiency and experiment with new possibilities. So in
general it can be stated that Grid Manufacturing as a concept provides new
organisational models, and lowers the time to market. Even the automated
manufacturing of one prototype product, without an impact into an active
production systems, is now easier to achieve. Any product can enter the
grid at any time, as long as the parts and capabilities to assemble them are
available. In general the concept could provide opportunities to make high-
mix, low-volume production more cost-efficient for automated manufacturing.

This brings us to the main research question. RQ0 - What could be the
role of Reconfigurable Manufacturing Machines in the automation
of high-mix, low-volume production? To enable flexibility and be able
to perform automated high-mix, low-volume production were the most impor-
tant aspects of this research. Reconfigurable Manufacturing Systems were an
essential and central parts in this. However, the equiplets used in Grid Manu-
facturing expands the context of reconfiguration much further than just being
able to change the hardware. Grid Manufacturing encompasses the three main
key interests, as mentioned in Chapter 1 Introduction: (1) Reconfigurability;
(2) Lowering Complexity; and (3) Autonomy. A manufacturing grid in the
current form is therefore an automated system that can adapt its hardware,
capabilities and immediately offer its new service to products. An important
aspect to be able to do this is through the use of Cyber-Physical Systems. The
integration of the Cyber (software) and Physical (control software) perspec-
tive brings many opportunities. Examples for this are are given all throughout
the thesis, e.g. in Chapter 4 in the context of object awareness, where object
models and knowledge is combined with the configuration knowledge of the
equiplet agent to confirm the location of a product.

To come back to the main question. Without Reconfigurable Manufactur-
ing Systems the possibilities to automate high-mix low volume products would

be limited. However, as also noted in the IBM whitepaper about autonomic
computing, the automation of (IT) infrastructure is an evolutionary process
(Computing, 2003). This also fits into the concept of Grid Manufacturing,
as seen from the perspective of the four categories mentioned in autonomic
computing, i.e.:

• Self-configuration - as mentioned in Chapter 5, systems can reconfigure
and automatically offer new services. Chapter 8 takes this even further
on a larger scale, by showing how reconfiguration can be applied on a
larger grid scale to adapt to new demand.

• Self-healing - as shown in Chapter 8, the grid can detect disturbances and
react to this by either replanning or reconfiguring such that a product
can still be manufactured.

• Self-optimising - Chapter 8 shows how RMS can be used to optimise de-
mand, by monitoring overall equiplet utilisation and reconfigure equiplets
to a capability with a higher demand.

• Self-protecting - In the context of Grid Manufacturing this can be seen as
the way that a system can protect itself from harm. As was described in
Chapter 7, treats like collisions or dangerous moves can now be avoided.

Reconfiguration plays an important part seen from all these four categories.
Hence, reconfigurability, and therefore RMS, plays an essential role in the
automation of high-mix, low-volume production.

10.2 Final Conclusion

Grid Manufacturing involves a great number of fields, this study looks at
the technical aspects and has found a number of opportunities. While Grid
Manufacturing in general requires more research to become fully mature for
industry, other aspects have been identified that could be used in the short
term. Hence, the study in general can be seen as another step into the intro-
duction of more Cyber-Physical Systems in industry. These are eight of the
achievements that have been made throughout this PhD study:

1. The 6D localisation process - based on several (standalone) tools, soft-
ware engineering, and computer vision, is able to identify and localise
objects in 6D, using two 2D cameras and CAD models;

2. The translation process for products to use generic services - Based on
the ability to translate abstract product steps into specific hardware
operations for any known configuration;
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3. The Hardware Abstraction Layer - which is able to change the configu-
ration of machines by starting/stopping/changing new software entities
by using data-driven systems;

4. A Hybrid Architecture - which combines flexibility and performance
by tying together a Multi-Agent System and the Hardware controlling
Robot Operating System, connecting by a high-performance middleware
system;

5. A standardised State System - which is tailored for reconfigurable and
autonomous manufacturing machines to give more insight in their cur-
rent status for safety purposes.

6. A simulator for reconfigurable manufacturing machines - which can dy-
namically test new configurations or manufacturing processes and also
determine if movements can be safely performed.

7. New organisational simulators - which test new organisation models,
i.e. if autonomous machines that are self manageable should actually
be self-managed or perhaps could better be controlled in a hierarchical
manner.

8. Solutions to practical problems - Straightforward ways like queue jump-
ing and reconfiguration that adapt to practical problems like distur-
bances and overloaded equiplets that will likely occur in a dynamic pro-
duction system like Grid Manufacturing.

These achievements provide opportunities for more flexibility in manufac-
turing, potentially opening new business opportunities and efficiency in the
manufacturing industry.
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Abstract

Each period of time has its own revolution, and with each revolution comes its
own organisational model. We find ourselves in the 4th industrial revolution,
where the internet of things connects autonomous embedded systems that
live both in the virtual ’cyber’ world, and in the real ’physical’ world. These
so-called Cyber-Physical Systems follow modern organisational models like
self-management and can take proactive actions themselves.

The thesis zooms in from the Cyber-Physical perspective to manufacturing
systems that are both reconfigurable, autonomous, and extremely flexible.
This can only be achieved by developing new methods and using technologies
that enable flexibility. However, efficiency has to be improved as well, e.g.
by making assembly so flexible that it becomes cost-efficient to automate the
production of low quantities of different products: so-called high-mix, low-
volume production. The ability to automatically manufacture high-mix, low-
volume production will drive the market for mass customisation, and bring
about a shorter time to market. In practice, the move for flexibility will be
achieved by creating new methods and tools, combining new technologies, and
applied testing with simulators and newly-developed manufacturing systems.

This thesis start by introducing the concept behind the manufacturing
methodology, called ’Grid Manufacturing’. Grid Manufacturing takes place
using autonomous agents for both the equipment and the product itself. Prod-
ucts live in the ’cyber’ world even before they are created in the ’physical’
world and are aware of how they should be manufactured. They communicate
and negotiate with reconfigurable manufacturing machines, called ’equiplets’.
The equiplets offer generic services, e.g. pick & place, which the products
can use on demand by negotiating a place into the equiplets schedule. This
study focuses on the design and technology behind equiplets specifically and
the infrastructure in general that is required to develop such a flexible and
reconfigurable manufacturing system.

To enable Grid Manufacturing, a whole set of technological challenges has
been investigated. The background, research approach and concepts cover the
first three introductory chapters, where after the main research starts with
Chapter 4 Object Awareness. This chapter introduces an approach to dynam-
ically handle and localise products by combining knowledge from different
autonomous systems. The chapter is followed by Chapter 5 Reconfiguration,
which shows how products can communicate and control equiplets without
being aware of the equiplet hardware configuration. The same chapter also
shows how the hardware cannot just be used by a product, but can also be
changed, making it possible to adapt the hardware configuration without re-
programming the system. Subsequently, in Chapter 6 Architecture, the study
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focuses on combining performance and flexibility in a hybrid architecture that
is used to control the ’grid’ with equiplets, showing a hybrid platform made
up of both a Multi-Agent System and the Robot Operating System platform
for hardware control. After the architecture is established, the thesis focuses
on how the architecture can be used safely, and introduces the control systems
and system behaviour to be able to predict the behaviour of the equiplets.
Now these fundamental systems for Grid Manufacturing have been covered
it is time to continue with Chapter 8 Validation and Utilisation, which looks
from a grid perspective and shows how a grid can be used in new ways, with
either a heterarchical control in which all systems are equal or not, when
this is more efficient. The chapter also tests the grid with different simulated
cases, to show that reconfiguration and the heterarchical approach can have
several benefits.

The thesis results show that automated flexibility in manufacturing is pos-
sible with the use of autonomous reconfigurable manufacturing systems. While
the entire concept needs to mature as a whole, several aspects can already be
applicable in industry in the short term. This includes the method of 6D lo-
calisation by using the knowledge of different autonomous systems. Another
example is a completely data-driven system, called the Hardware Abstrac-
tion Layer, for reconfigurable systems which makes it possible to change the
hardware of a system without the need for new software reprogramming.

Dutch Summary

Elke periode kent zijn eigen revolutie en elke revolutie brengt zijn eigen or-
ganisatorische model met zich mee. We bevinden ons nu in de 4e industriële
revolutie, waar het internet van dingen ons verbindt met autonome embed-
ded systemen. Deze systemen zijn actief in de virtuele ’cyber’ wereld, alsook
in de echte ’fysieke’ wereld om ons heen. Deze zogenoemde ’Cyber-Fysieke’
Systemen volgen daarmee een modern organisatorisch model, namelijk zelf-
management, en zijn dan ook in staat zelf proactieve acties te ondernemen.

Dit proefschrift belicht productiesystemen vanuit het Cyber-Fysieke per-
spectief. De productiesystemen zijn hier herconfigureerbaar, autonoom en
zeer flexibel. Dit kan enkel worden bereikt door het ontwikkelen van nieuwe
methodes en het toepassen van nieuwe technologieën die flexibiliteit verder
bevorderen. Echter, efficiëntie is ook van belang, bijvoorbeeld door produc-
tassemblage zo flexibel te maken dat het daardoor kostenefficiënt is om de
productie van diverse producten met een lage oplage, zogenaamde high-mix,
low volume producten, te automatiseren. De mogelijkheid om zo flexibel te
kunnen produceren moet bereikt worden door de creatie van nieuwe methoden
en middelen, waarbij nieuwe technologieën worden gecombineerd; een belan-
grijk aspect hierbij is dat dit toepasbaar getest moet worden door gebruik
van simulatoren en speciaal hiervoor ontwikkelde productiesystemen. Dit on-
derzoek zal beginnen met het introduceren van het concept achter de bijbe-
horende productiemethodologie, welke Grid Manufacturing is genoemd. Grid
Manufacturing wordt uitgevoerd door autonome entiteiten (agenten) die zowel
de productiesystemen zelf, als de producten representeren. Producten leven
dan al in de virtuele cyber wereld voordat zij daadwerkelijk zijn gebouwd,
en zijn zich bewust uit welke onderdelen zij gemaakt moeten worden. De
producten communiceren en overleggen met de autonome herconfigureerbare
productiesystemen, de zogenaamde equiplets. Deze equiplets leveren generieke
diensten aan een grote diversiteit aan producten, die hierdoor op elk moment
geproduceerd kunnen worden. Het onderzoek focust hierbij specifiek op de
equiplets en de technische uitdagingen om dynamisch geautomatiseerde pro-
ductie mogelijk te maken.

Om Grid Manufacturing mogelijk te maken is er een set van technologische
uitdagingen onderzocht. De achtergrond, onderzoeksaanpak en concepten zijn
dan ook de eerste drie inleidende hoofdstukken. Daarna begint het onderzoek
met Hoofdstuk 4 Object Awareness. Dit hoofdstuk beschrijft een dynamische
manier waarop informatie uit verschillende autonome systemen gecombineerd
wordt om objecten te herkennen, lokaliseren en daarmee te kunnen manip-
uleren. Hoofdstuk 5 Herconfiguratie beschrijft hoe producten communiceren
met de equiplets en welke achterliggende systemen ervoor zorgen dat, ondanks
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dat het product niet bekend is met de hardware van de equiplet, deze toch in
staat is acties uit te voeren. Tevens beschrijft het hoofdstuk hoe de equiplets
omgaan met verschillende hardwareconfiguraties en ondanks de aanpassingen
zichzelf toch kunnen besturen. De equiplet kan dan ook aangepast worden
zonder dat deze opnieuw geprogrammeerd hoeft te worden. In Hoofdstuk 6
Architectuur wordt vervolgens dieper ingegaan op de bovenliggende architec-
tuur van de equiplets. Hier worden prestaties gecombineerd met flexibiliteit,
waarvoor een hybride architectuur is ontwikkeld die het grid van equiplets con-
troleert door het gebruik van twee platformen: Multi-Agent System (MAS) en
Robot Operating System (ROS). Nadat de architectuur is vastgesteld, wordt er
in Hoofdstuk 7 onderzocht hoe deze veilig ingezet kan worden. Hierbij wordt
een controlesysteem ingevoerd dat het systeemgedrag bepaalt, waarmee het
gedrag van de equiplets transparant wordt gemaakt. Tevens zal een simulatie
met input van de sensoren uit de fysieke wereld ’live’ controleren of alle beweg-
ingen veilig uitgevoerd kunnen worden. Nadat de basisfunctionaliteit van het
Grid nu compleet is, wordt in Hoofdstuk 8 Validatie en Utilisatie gekeken naar
hoe Grid Manufacturing gebruikt kan worden en welke nieuwe mogelijkheden
deze kan opleveren. Zo wordt er besproken hoe zowel een hiërarchische als een
heterarchische aanpak, waar alle systemen gelijk zijn, gebruikt kan worden.
Daarnaast laat het hoofdstuk o.a. aan de hand van enkele voorbeelden en
simulaties zien welke effecten herconfiguratie kan hebben, en welke voordelen
deze aanpak zoal kan bieden..

Het proefschrift laat zien hoe met technische middelen geautomatiseerde
flexibiliteit mogelijk wordt gemaakt. Hoewel het gehele concept nog volwassen
zal moeten worden, worden er enkele aspecten getoond die op de korte ter-
mijn toepasbaar zijn in de industrie. Enkele voorbeelden hiervan zijn: (1) het
combineren van gegevens uit diverse (autonome) bronnen voor 6D-lokalisatie;
(2) een data-gedreven systeem, de zogeheten hardware-abstractielaag, die her-
configureerbare systemen controleert en de mogelijkheid biedt om deze pro-
ductiesystemen aan te passen zonder deze te hoeven herprogrammeren; en (3)
het gebruik van Cyber-Fysieke systemen om de veiligheid te verhogen.
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van lector Erik Puik. Dit bleek een keerpunt in mijn leven en het begin van
een groot avontuur, dat uiteindelijk zou leiden tot, onder andere, dit proef-
schrift. Toentertijd had ik nooit gedacht dat ik ooit voor de klas zou staan,
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voor techniek een nieuw perspectief, namelijk niet alleen bezig zijn met inno-
vatie, onderzoek, en techniek zelf, maar ook nog eens veiligstellen dat dit onze
gezamenlijk cultuur zal zijn door de ingenieurs van de toekomst te creëren!
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factor was om deze weg in te slaan, namelijk Erik Puik, de grondlegger, dan
wel godfather, van agile manufacturing en vele andere innovaties binnen de
Hogeschool Utrecht. Erik laat constant iedereen zien wat er mogelijk is en is
daarmee een enorme drijvende kracht binnen de Hogeschool Utrecht. Zonder
Erik was ik hier niet geweest, maar waar ik hem het meest dankbaar voor ben
zijn de vele avonturen, de geweldige ideeën en dromen die we samen hebben
gerealiseerd, de brainstormsessies en de uitdagingen die we zijn aangegaan,
en de manier waarmee je mij (en anderen) tot over het randje duwde, maar
nooit liet vallen. Dan ook dank aan Leo van Moergestel, altijd positief, en
ik kon altijd bij hem terecht. Ik leerde Leo stiekem in 1999 al kennen vanuit
zijn studieboeken en nu staan we samen als vrienden bij één van de mooiste
hbo-opleidingen van Nederland! Tevens vind ik het nodig om niet alleen dank,
maar meer een verontschuldiging aan mijn vrienden uit te spreken, die mij de
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bedanken, die zijn tic om mijn magere taalgevoel te corrigeren nu eens voor
het goede doel kon inzetten door mijn proefschrift te proofreaden.

Als laatste komen eigenlijk degenen die het meest hebben bijgedragen,
want welke ideeën ik ook had, uiteindelijk was het project vele malen te groot
om alleen uit te voeren. Zo hebben we machines (hardware) ontworpen, vele
hardwaremodules gecreëerd, producten bedacht en een slordige 2500 source
files aan code ontworpen en geschreven. Naar schatting bevat het project dan
ook niet vier manjaren werk, maar een ruime veelvoud daarvan, en dat soms
letterlijk met zweet en tranen tot stand is gekomen. Een aantal mensen wil
ik dan ook specifiek noemen: Joost van Duijn en Rik Lafeber, twee geweldige
werktuigbouwkundig ingenieurs en vrienden die me oneindig hebben geholpen
met briljante ontwerpen, maar ook met vele klusjes ver onder hun uitstek-
ende niveau. Tevens Tommas Bakker, één van de meest briljantste Technische
Informatica studenten die ik tot nog toe heb mogen ontmoeten, en die essen-
tieel was in een groot deel van de implementatie en code van de Hardware
Abstraction Layer die is geschreven voor dit project. Ook Laurens van den
Brink wil ik graag bedanken. Hij was een van de eerste master studenten die
afstudeerden bij de Hogeschool Utrecht en heeft geholpen bij de implementatie
van de simulaties in het laatste hoofdstuk (Validation & utilisation). Uitein-
delijk hebben bijna 100 studenten een bijdrage geleverd aan dit project, die ik
zo meteen zoveel mogelijk bij naam zal noemen. Allen, mijn dank! Dan wil
ik natuurlijk ook de leescommissie bedanken, die de moeite hebben genomen
mijn proefschrift te lezen en te beoordelen, en die dit in sommige gevallen naar
een hoger niveau hebben getild: prof. dr. Jaap van den Herik, dr. ir. Heico
Sandee, prof. dr. Imre Horváth, prof. dr. Frances Brazier en prof. dr. S.

Brinkkemper. Dank voor jullie feedback en inspanning.
Vanzelfsprekend waren er vele anderen die hielpen met hun ondersteun-

ing: secretariaat, projectmedewerkers, onderzoekers, inkopers, voedselbezorg-
ers, managers, lectoren, schoonmakers, verhuizers, catering, labbeheerders,
diverse collegas, enzovoort. Enorm veel dank!

Ten slotte, het was een (zeer) uitdagende, maar geweldige tijd, maar ook
één die ik nu graag afsluit op weg naar een nieuwe start in een andere woning,
met gezin, avonturen, een nieuwe functie en andere uitdagingen. Zoals altijd
stel ik mezelf wel de vraag, had ik het met de kennis van nu weer opnieuw
gedaan? Het antwoord is ja. Echter niet op deze manier, zowel niet qua aan-
pak, als qua inhoud. Toch... misschien is dat precies waar het om gaat en kan
ik dan ook vaststellen, dat het gelukt is, want ik heb enorm veel mogen leren!
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