
Tutorial SA for ABM – part 1: introduction in R and RNetLogo December 2020

George van Voorn & Guus ten Broeke December 2020 p. 1/10

Tutorial: R for NetLogo

Author: George van Voorn (Wageningen University & Research)
With: Guus ten Broeke (Wageningen University & Research)

This is part 1 of the teaching module “Sensitivity Analysis for Agent Based Models”. For this module we
assume you (the student) are working on an Agent Based Model (ABM), for instance in the context of
studying the resilience of a Socio-Ecological System. Building an ABM is only part of the modelling work.
A model is a way of generating new data, e.g., for understanding how the system works, or for making
predictions about system response to interventions. To get information out of your model, you need to
analyze it in a rigorous fashion. ABMs are stochastic, rule-based models, and as such cannot be analyzed
using the mathematical methodologies that are available for analyzing deterministic models. Moreover,
we can expect ABMs to display behaviour typical for complex adaptive systems, including tipping points,

system adaptation, and transitional patterns. To analyze your ABM, you will need statistical methods.
One way of implementing these is by making use of the statistical facilities of the free software R. In this
tutorial we assume you have built your model in NetLogo and will make use of R to analyze it. The
interfacing with NetLogo goes through RNetLogo (developed by Jan Thiele). Using RNetLogo helps to
automate running of ABMs and collecting simulation data for various parameter settings. This collected
data may then be used in the application of statistical methods.

This part of the tutorial is intended to make you acquainted with R and RNetLogo so that you can use it
for analyzing your ABM in this course.

Contents
1. Download and install R .. 2

2. Starting R files and basic commands for R .. 2

3. Reading files .. 4

4. Simple statistics in R ... 5

5. Plotting in R ... 5

6. Linear regression in R .. 6

7. Interface RNetLogo ... 9

8. Playing with RNetLogo: fire model demo... 9

Tutorial SA for ABM – part 1: introduction in R and RNetLogo December 2020

George van Voorn & Guus ten Broeke December 2020 p. 2/10

1. Download and install R

You can download R here:
https://cran.r-project.org/bin/windows/base/

Instructions on how to install R (and RStudio, but we will not work with it) can be found in many videos

circulating on YouTube, for example. The version of R used when creating this tutorial is version 3.5.0.
As always, small deviations might occur when working with a different version. We assume in this tutorial
that you, as a student, have little to no experience with using R.

2. Starting R files and basic commands for R

Select R under the Start button, and open up R. You should now have the R console.

Enter a variable. E.g., type

 aap <- 1
Then hit ‘Enter’. We have now created a variable named ‘aap’. What is put into it is the value 1. You can
always check what ‘aap’ is by typing

 aap

(and then of course ‘Enter’). The console responds with
 [1] 1
The first element ([1]) is the line number, the second (1) is the value.

We can also enter a vector. Remember your linear algebra? A vector is a column of entries, and most
data will typically be vector-based. For example, we have

𝑣 = (
4
5
7
)

These could be the results of running your ABM three times under similar conditions, e.g., in the first run
four agents survived in the simulation of your ABM, in the next one five, and in the third one seven. We

can also denote this as

𝑣𝑇 = (4 5 7)

We call this ‘transposed’. This is a common notation you should get used to, as working with vectors is
the basis of understanding how R operates. Type

 noot <- c(4,5,7)
You have now entered a transposed column named ‘noot’ (again, you can check by typing ‘>noot’
followed by ‘Enter’).

RNetLogo allows you to store multiple outputs from a single run of your ABM. You may choose to store
output on different time points, or multiple outputs, like ‘number of agents’ and some traits of these
agents. You will then probably have a file with multiple rows and columns. Such a file is a matrix.
Suppose we have

https://cran.r-project.org/bin/windows/base/

Tutorial SA for ABM – part 1: introduction in R and RNetLogo December 2020

George van Voorn & Guus ten Broeke December 2020 p. 3/10

𝑀 = (
4 𝑎
5 𝑏
7 𝑁𝐴

)

The second column of this matrix indicates some trait, which can have values ‘a’, ‘b’, or ‘NA’ (not
available – yes, R can handle those!). Before you can enter a matrix, you will need to set the
dimensions. Type

 mies <- matrix(nrow = 3, ncol = 2)
You have created a matrix with three rows and two columns. If you type ‘mies’, you get
 [,1] [,2]
[1,] NA NA
[2,] NA NA
[3,] NA NA

All these entries are empty, but the structure exists now. You can now fill each entry with a value, by
typing

 mies[1,1] <- 4
 mies[1,2] <- a

Oops! Error: object 'a' not found

We have not defined ‘a’ previously. We, however, would like enter strings in this case, as the trait is not
a numerical variable, but a categorical one (like ‘red’ or ‘blue’). We type

 mies[1,2] <- “a”
We continue with

 mies[2,1] <- 5
 mies[2,2] <- “b”

 mies[3,1] <- 7

Like we said, do you remember your linear algebra? Element ‘mies[i,j]’ has indices row ‘i’ and column ‘j’.
If you mix these things up, your analysis later on may give totally different results!
We now have

 mies
 [,1] [,2]
[1,] "4" "a"
[2,] "5" "b"
[3,] "7" NA
You see that R has coerced all values in the same format. We type

 is.numeric(mies[1,1])

The answer is: FALSE, because R has recognized from the “a” and “b” entries that the matrix is not
numeric. The lesson is that we can use ‘matrix’ only for homogeneous data entries.

If we want to enter heterogeneous data, like data containing both numbers and strings (and this is not
unlikely when working with an ABM, where we commonly have simulated agents with non-numeric
properties), we’d better use a data frame. Under the hood, a data frame is a list of vectors of equal
length. Type

 schapen <- data.frame(“Number of Agents” = c(4,5,7), “Trait” =c(“a”, “b”, NA))
If we check, we have
 Number.of.Agents Trait
1 4 a

2 5 b
3 7 <NA>
By default, a data frame coerces strings to factors (which are convenient for statistical analysis like linear
regression). If you do not want this, add “, stringsAsFactors = FALSE” between the brackets.

We now already have a great deal of stuff in the memory. It is always good practice to start each session
in R by wiping your memory (well, not yours – the computer memory). Type

 ls()
I.e., “list(what to list?)”. This command gives the locally defined variables. We will have the output
[1] "aap" "mies" "noot" "schapen"
To wipe these, type

 rm(list = ls())

I.e., “remove (what to remove? Well, all the listed stuff)”. It removes the list containing all pre-defined
symbols. Check this by again typing

 ls()
It should be an empty list now.

Tutorial SA for ABM – part 1: introduction in R and RNetLogo December 2020

George van Voorn & Guus ten Broeke December 2020 p. 4/10

3. Reading files

Typically you will not enter everything manually, but you will read data from files. Also, you will want to
work with a text editor, so you can save a file containing all R commands. Also, we want to set the
working directory. If we want to call installed packages, and to interface R and NetLogo later on, we need
to have a place from which we start.

Create a new text file in the directory of your choice, say, test.r. Alternatively, you create it using
file/New script in the R prompt.
Open this file under file/Open script; of course, it’s empty.
You can now type all commands as lines in this text file, so

 ls()
 rm(list = ls())

You can execute a line by placing the cursor at the start of that line, then press Ctrl+R. If you want to
execute parts of the programme at once, select the appropriate lines. And if you wish to execute the
whole programme, just press Ctrl+A to select all, then Ctrl+R.

Then type
 setwd(“THE NAME OF THE DIRECTORY YOU WANT TO WORK FROM”)

I.e., “set working directory”, and then whatever the location is. It could be something like
 setwd("C:/0Werk/Education/Summer_School")

If you want to check, type
 getwd()

Suppose we have an output file (ending in .dat, say foo.dat), containing the entries of this matrix 𝑀

(
4 𝑎
5 𝑏
7 𝑁𝐴

)

To read it in as a data table, type

 foo.data <- read.table(“foo.dat”, header = FALSE)
Of course, “foo.data” can be any name you’d like. Note that R has automatically assigned foo.data as a
data frame. Should the data columns have names, you would have header = TRUE. If you check, you see

 foo.data
 V1 V2
1 4 a
2 5 b
3 7 <NA>

You can select columns. E.g., type

 foo.data[1]
This gives you the first column of the data file.

Type
 foo.data[,1]

This gives you the transposed first column.
Type

 foo.data[1,]
This gives you the first row.
Finally, type

 foo.data[3,2]
This gives you the element in row 3, column 2 (it should read ‘<NA>’).

If you want to select specific rows or columns, you can use ‘:’. Type

 foo.data[2:3,]
This gives
 V1 V2
2 5 b
3 7 <NA>

Play around with this to get the hang of it.

Tutorial SA for ABM – part 1: introduction in R and RNetLogo December 2020

George van Voorn & Guus ten Broeke December 2020 p. 5/10

4. Simple statistics in R

Now let’s move on to use R for what it was intended for in the first place: statistical analysis.

We read in a file included in the zip belonging to this tutorial, ‘00testfile.dat’. Give it a name, like

 test.data <- read.table(“00testfile.dat”, header = FALSE)

 test.data
 V1 V2
1 1 1.0
2 2 1.5
...
17 17 9.0

We consider only the entries in the second column. Type

 X <- test.data$V2
The ‘$’ indicates the column. Since the columns have no names, they are identified by V followed by a
number.

We first check the number of entries. This is the length or dimension of the vector. Type
 length(X)

This gives ‘17’. This is a good first check on your data. If the number of rows (or columns) isn’t correct,
then something needs to be fixed!

We then calculate the average (also known as mean or expected value). Type

 mean(X)
The answer should be ‘5’.

The variance is a measure for the spread of the values. Type

 var(X)

The answer should be ‘6.375’.

5. Plotting in R

The above are all summary statistics. It is good practice to inspect your data using graphical means.

A good first visual data check is to look at the distribution of the data. Data do not usually follow a
perfect textbook distribution known as probability density function (PDF), plus the number of entries is
limited and the exact distribution is therefore not known. We therefore approximate a PDF by a
histogram. The data are assigned to different bins, typically of fixed interval length.

Type

 h <- hist(X, breaks = 20)
This gives you a histogram with the arbitrary name ‘h’ consisting of 20 bins. Experiment with the number
of bins to see what happens. In this case, not a lot. The 17 entries in the data file are perfectly
distributed according to a uniform distribution. But usually your data will look differently!

We can also make graphical files in R (of course). Type

 png(filename = “myhistogram.png”)
 plot(h)
 dev.off()

This last command closes the graphical interface, and the png is actually printed. You now have a picture
to put into your Powerpoint presentation or paper.

Note, that in this case the left bin has two entries instead of one. This has to do with how you set the
lower and upper boundaries.

Tutorial SA for ABM – part 1: introduction in R and RNetLogo December 2020

George van Voorn & Guus ten Broeke December 2020 p. 6/10

6. Linear regression in R

We may also be interested in correlating variables.

First open the file ‘01testfile.r’ in the zip in a text editor and manually adjust the line for the working
directory. Then, use ‘File/Open Script’ and select the file ‘01testfile.r’. The file contains the lines

 ofatr.data <- read.table("ofatr.dat", header=TRUE)
 r <- ofatr.data$r
 ar <- ofatr.data$agents
 fitr <- lm(ar~r,data=ofatr.data)
 summary(fitr)

Select all the text in the file (e.g., by using Ctrl+A when using the default Windows text editor) and

execute by running Ctrl+R.

What we do here is give names to the first and second columns, then try to obtain the line that
minimizes the sum of square distances, i.e., the regression line. The command for this is

 lm(y ~ x, data = XXX)
Here, variable y is the dependent variable, x is the independent variable, and ‘XXX’ is the data used in
the regression. The summary is to see if this ‘fit’ is any good. In this case, we get:

Call:

lm(formula = ar ~ r, data = ofatr.data)

Residuals:
 Min 1Q Median 3Q Max
-32.971 -8.146 3.540 13.116 21.535

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 49.925 4.027 12.40 <2e-16 ***
r 984.176 12.330 79.82 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 15.1 on 88 degrees of freedom
Multiple R-squared: 0.9864, Adjusted R-squared:
0.9862
F-statistic: 6371 on 1 and 88 DF, p-value: < 2.2e-16

The low p-value < 0.001 (namely, the ‘***’) implies significance following the standard threshold of 5%.

In other words, the fit seems very reasonable, and y could depend on x. Although we normally cannot
prove a causal relation this way for ‘black box’ data, it is likely in this case that the causal dependence is
real because the model was constructed this way. We can thus use these results in this case as a test of
whether we have implemented our model correctly.

Tutorial SA for ABM – part 1: introduction in R and RNetLogo December 2020

George van Voorn & Guus ten Broeke December 2020 p. 7/10

Because we commonly expect nonlinear relations in ABMs, we would like to display our data fit in a

graphical way to get more information. We type
 png(filename="scatterplotr.png")
 plot(r, ar, main="Scatterplot of no. of agents vs. r", ylab = 'No. of agents')
 abline(fitr)
 dev.off()

The command ‘abline()’ allows us to plot the fit into the scatterplot.

In your working directory, a png-file should appear that looks like this:

In this case, superficially it seems the linear fit is quite accurate, although a clear curvature is visible.
Should you want to further test the quality of your fit, you can always check the residuals with a QQ plot
or a Shapiro-Wilks test, for instance.

Look at the data

 ar

This should give:

> ar
 [1] 121.284 128.850 120.498 127.340 121.374 116.124 124.668 118.032 115.372
[10] ...
[82] 522.528 520.912 520.774 519.792 522.786 519.058 522.042 519.832 521.786

For each ‘group’ of ten ‘observations’ (fixed value of r) we can determine whether they would be likely to
come from a normal distribution or not. Select for instance the first ten values (for 𝑟 = 0.10), by taking

 ar[1:10]

> ar[1:10]
 [1] 121.284 128.850 120.498 127.340 121.374 116.124 124.668 118.032 115.372
[10] 124.668

You can do a Shapiro-Wilks test by typing

 shapiro.test(ar[1:10])

> shapiro.test(ar[1:10])

 Shapiro-Wilk normality test

data: ar[1:10]
W = 0.95598, p-value = 0.7392

This test assumes as null hypothesis that the distribution (in this case of the values of ‘ar’ given 𝑟 = 0.10)

is a normal distribution. If the p-value is smaller than the chosen alpha level (typically 0.05), this null
hypothesis is rejected. In this case, the p-value is clearly larger than alpha, and the null hypothesis
cannot be rejected. I.e., we can assume it is a normal distribution. We would like to point out here, that

you may need quite a number of samples before you can be reasonably certain of this. In this case, we
have used ten samples per parameter value, but some 50 samples might be more appropriate.

You can repeat this test for each of the values of r. However, it is more appropriate to perform this test
on the residuals after the fit. The residual of an observed value is the difference between the observed
value (or ABM model output, in this case) and the estimated value of the quantity of interest (like the
sample mean of the ABM model outputs at the same parameter value, in this case). Do not mix up
residual with error, which is the deviation between the observed value and the unobservable true value

Tutorial SA for ABM – part 1: introduction in R and RNetLogo December 2020

George van Voorn & Guus ten Broeke December 2020 p. 8/10

(although we might be able to calculate such a true value for simpler models, but this is not likely in the

case of ABMs).

You can fetch the residuals by typing

 fitr.res <- residuals(fitr)

Now, when we perform a Shapiro-Wilks test

 shapiro.test(fitr.res)
We get:

> shapiro.test(fitr.res)

 Shapiro-Wilk normality test

data: fitr.res
W = 0.92106, p-value = 4.054e-05

Note, that when we look at the residuals of the separate ‘groups’, like group 1 (𝑟 = 0.10), we get evidence

for a normal distribution (i.e., large p-values) for each ‘group’. The statistical inspection of the full set of
residuals however seems to suggest that we may not have a straight line. So even if the residuals for
each fixed value of r follow a normal distribution, the full set does not. This reveals that the residuals of
the linear regression model differ between different values of the parameter r. In other words, there
seems to be some trend in the data that is not described by the fitted straight line. Recall that the plot of

the regression fit seemed to show some curvature in the dataset. This is consistent with our finding that
the residuals are not normally distributed, and likely there is also a nonlinear contribution we should
include in our fit.

We can also plot the residuals or the standardized residuals in a QQ plot. A QQ (quantile-quantile) plot is
a probability plot meant to compare two probability distributions (this could be a histogram made from
data and a theoretical distribution). If the two compared distributions are similar, the points in the plot
will all lie along the line 𝑦 = 𝑥. If the distributions are linearly related, the points will lie along a line, but

not necessarily on the line 𝑦 = 𝑥.

Type:

 fitr.sres <- rstandard(fitr)
And then plot the QQ plot

 png(filename = "sresiduals.png")
 qqnorm(fitr.sres)

 qqline(fitr.sres)
 dev.off()

(The command ‘dev.off()’ is meant to close the plot screen again.)

We see something like this:

The results of our analysis do not provide proof, but they do provide insight in whether we maybe should

not be blindly accepting a linear regression as a good fit. In this case, both the results of the Shapiro-
Wilks test on the residuals and the QQ plot based on the standardized residuals seem to suggest that the
relationship between r and ar (the no. of agents) is not a linear one. We would proceed, for instance, by
detrending the data using a nonlinear function. From a scientific point of view, you would want to come
up with a process or an explanation on which to base this nonlinear relation.

Tutorial SA for ABM – part 1: introduction in R and RNetLogo December 2020

George van Voorn & Guus ten Broeke December 2020 p. 9/10

7. Interface RNetLogo

It is now time to start with the interface between R and NetLogo. Important: You should have a folder
‘library’ in the working directory. This library should contain ‘RNetLogo’, as well as any other packages
you are using. This way you can keep an eye on which packages you use, and you can load them into the
text file you are working in by simply calling ‘library(NAME_PACKAGE)’.

You can download RNetLogo here:
https://cran.r-project.org/web/packages/RNetLogo/index.html
You can also use ‘install.packages()’ in the text editor.

Open up a new file ‘02testfile.r’. The file contains the lines

 .libPaths("library")
 install.packages("RNetLogo")
 library(RNetLogo)

You can out-comment a line by putting a ‘#’ in front; you will only need to use ‘install.packages()’ once.

We also need to call NetLogo. Type

 nl.path <- "C:/Program Files/NetLogo 6.0.4/app"
 nl.jarname <- "netlogo-6.0.4.jar"
 NLStart(nl.path = nl.path, gui = FALSE, nl.jarname = nl.jarname)

In the example I assume you have installed NetLogo 6.0.4 under Program Files. You will have to change
this accordingly if you have installed a different version and/or in a different folder.

8. Playing with RNetLogo: fire model demo

Now, let’s load a model to play with. We are going to use the NetLogo fire model. We place a copy of the
model from the NetLogo library in the folder ‘Model’ in the folder we work in. Then type

 NLLoadModel("C:/NAME_FOLDER_YOU_WORK_IN/Model/Fire.nlogo")

RNetLogo can now make an interface to NetLogo, and you can use R to ‘control’ the NetLogo model
without actually opening it (assuming you have first checked it for bugs).

To try, type

 NLCommand("set density", 57)
 NLCommand("setup")
 NLCommand("go")
 burned <- NLReport("burned-trees")
 print(burned)
 NLQuit()

You should get a number, which is the output of the NetLogo simulation after one iteration. The last
command (‘NLQuit’) is to close the NetLogo simulation again, otherwise you will continue with that
simulation.

It is of course very cumbersome to execute a whole set of simulations in this way. So we are going to set

up a numerical experiment. Type
 data <- c()
 nruns <- 10
 nticks <- 1000

I.e., we have created a column vector containing empty elements to store our simulation results. We
have created integers for how many runs we want to do, and how many iterations (‘ticks’ in NetLogo)
they should cover. It is worthwhile to mention to put the integer ‘nticks’ to a large enough number; the
fire model terminates only when no more ‘fires are burning’, which can take quite a few ticks (but a
thousand should be more than enough while ensuring it will not run forever). Alternatively, you may be
interested in the output at a particular time point. In that case, put it to the number you desire.

Now, we are using a for-loop. Granted, many R fans do not advocate the use of for-loops; instead, they
suggest vectorization. We will address this issue in part 2 of this tutorial, but for now I leave that
discussion, because as a practical person I first want things to work; the code cleaning can come later.

The whole reason for setting up this loop is to produce output. Therefore, in the loop we also need
commands to write output from the model to an output file.

https://cran.r-project.org/web/packages/RNetLogo/index.html

Tutorial SA for ABM – part 1: introduction in R and RNetLogo December 2020

George van Voorn & Guus ten Broeke December 2020 p. 10/10

Type

 for (i in 1:nruns){
 print(i)
 NLCommand("set density", 57) # percentage
 NLCommand("setup")
 for(k in 1:(nticks+1)){
 tick <- NLReport("ticks")
 NLCommand("go")
 }
 burned <- NLReport("burned-trees")
 print(burned)
 data[i] <- burned
 }

Summarizing, we open a for-loop for nruns simulations. For each simulation we print the iteration
number ‘i’, we set the density to a fixed number (57), we set up the initial conditions of the model using
the ‘setup’ command, then run the model for nticks iterations in a separate for-loop, in which the tick is
reported, the NetLogo ‘go’ command is called, and the output ‘number of burned trees’ is reported. The
‘number of burned trees’ of the final iteration is stored in the element ‘burned’, which is stored in the
vector ‘data’ we created earlier as element ‘data[i]’, i.e., the output at the end of the simulation is stored
as the i-th element in the data vector. Be advised, that when ‘nruns’ is larger it may take a while before
the simulations have terminated.

Note, that in order to store our simulation results in a data file, we first have to close NetLogo. Type

 NLQuit()

Then, type
 write(data, file = "simdatafire.dat", append = FALSE, sep = " ")

In the folder you work in, you will see a file ‘simdata.dat’ has appeared, containing ten values, such as:

610 816 795 825 787
854 875 797 644 801

This is the output of your numerical experiment you can use in further analysis. We will continue creating

and analyzing model output like this in part 2 of this tutorial.

You can now proceed to part 2 of this tutorial.

