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Tutorial: R for NetLogo 
 

Author: George van Voorn (Wageningen University & Research) 
With: Guus ten Broeke (Wageningen University & Research) 
 
This is part 1 of the teaching module “Sensitivity Analysis for Agent Based Models”. For this module we 
assume you (the student) are working on an Agent Based Model (ABM), for instance in the context of 
studying the resilience of a Socio-Ecological System. Building an ABM is only part of the modelling work. 
A model is a way of generating new data, e.g., for understanding how the system works, or for making 
predictions about system response to interventions. To get information out of your model, you need to 
analyze it in a rigorous fashion. ABMs are stochastic, rule-based models, and as such cannot be analyzed 
using the mathematical methodologies that are available for analyzing deterministic models. Moreover, 
we can expect ABMs to display behaviour typical for complex adaptive systems, including tipping points, 

system adaptation, and transitional patterns. To analyze your ABM, you will need statistical methods. 
One way of implementing these is by making use of the statistical facilities of the free software R. In this 
tutorial we assume you have built your model in NetLogo and will make use of R to analyze it. The 
interfacing with NetLogo goes through RNetLogo (developed by Jan Thiele). Using RNetLogo helps to 
automate running of ABMs and collecting simulation data for various parameter settings. This collected 
data may then be used in the application of statistical methods.  
 
This part of the tutorial is intended to make you acquainted with R and RNetLogo so that you can use it 
for analyzing your ABM in this course. 
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1. Download and install R 
 
You can download R here: 
https://cran.r-project.org/bin/windows/base/ 
 
Instructions on how to install R (and RStudio, but we will not work with it) can be found in many videos 

circulating on YouTube, for example. The version of R used when creating this tutorial is version 3.5.0. 
As always, small deviations might occur when working with a different version. We assume in this tutorial 
that you, as a student, have little to no experience with using R. 
 

2. Starting R files and basic commands for R 
 
Select R under the Start button, and open up R. You should now have the R console. 
 

 
 
Enter a variable. E.g., type 

 aap <- 1 
Then hit ‘Enter’. We have now created a variable named ‘aap’. What is put into it is the value 1. You can 
always check what ‘aap’ is by typing 

 aap 

(and then of course ‘Enter’). The console responds with 
 [1]  1 
The first element ([1]) is the line number, the second (1) is the value. 
 
We can also enter a vector. Remember your linear algebra? A vector is a column of entries, and most 
data will typically be vector-based. For example, we have 
 

𝑣 = (
4
5
7
) 

 
These could be the results of running your ABM three times under similar conditions, e.g., in the first run 
four agents survived in the simulation of your ABM, in the next one five, and in the third one seven. We 

can also denote this as 
 

𝑣𝑇 = (4 5 7) 
 

We call this ‘transposed’. This is a common notation you should get used to, as working with vectors is 
the basis of understanding how R operates. Type 

 noot <- c(4,5,7) 
You have now entered a transposed column named ‘noot’ (again, you can check by typing ‘>noot’ 
followed by ‘Enter’). 
 
RNetLogo allows you to store multiple outputs from a single run of your ABM. You may choose to store 
output on different time points, or multiple outputs, like ‘number of agents’ and some traits of these 
agents. You will then probably have a file with multiple rows and columns. Such a file is a matrix. 
Suppose we have 
 

https://cran.r-project.org/bin/windows/base/
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𝑀 = (
4 𝑎
5 𝑏
7 𝑁𝐴

) 

 
The second column of this matrix indicates some trait, which can have values ‘a’, ‘b’, or ‘NA’ (not 
available – yes, R can handle those!). Before you can enter a matrix, you will need to set the 
dimensions. Type 

 mies <- matrix(nrow = 3, ncol = 2) 
You have created a matrix with three rows and two columns. If you type ‘mies’, you get 
     [,1] [,2] 
[1,]   NA   NA 
[2,]   NA   NA 
[3,]   NA   NA 
 

All these entries are empty, but the structure exists now. You can now fill each entry with a value, by 
typing 

 mies[1,1] <- 4 
 mies[1,2] <- a 

Oops! Error: object 'a' not found 
 
We have not defined ‘a’ previously. We, however, would like enter strings in this case, as the trait is not 
a numerical variable, but a categorical one (like ‘red’ or ‘blue’). We type 

 mies[1,2] <- “a” 
We continue with 

 mies[2,1] <- 5 
 mies[2,2] <- “b” 

 mies[3,1] <- 7 
 
Like we said, do you remember your linear algebra? Element ‘mies[i,j]’ has indices row ‘i’ and column ‘j’. 
If you mix these things up, your analysis later on may give totally different results! 
We now have 

 mies 
     [,1] [,2] 
[1,] "4"  "a"  
[2,] "5"  "b"  
[3,] "7"  NA   
You see that R has coerced all values in the same format. We type 

 is.numeric(mies[1,1]) 

The answer is: FALSE, because R has recognized from the “a” and “b” entries that the matrix is not 
numeric. The lesson is that we can use ‘matrix’ only for homogeneous data entries.  
 
If we want to enter heterogeneous data, like data containing both numbers and strings (and this is not 
unlikely when working with an ABM, where we commonly have simulated agents with non-numeric 
properties), we’d better use a data frame. Under the hood, a data frame is a list of vectors of equal 
length. Type 

 schapen <- data.frame(“Number of Agents” = c(4,5,7), “Trait” =c(“a”, “b”, NA)) 
If we check, we have 
  Number.of.Agents Trait 
1                4     a 

2                5     b 
3                7  <NA> 
By default, a data frame coerces strings to factors (which are convenient for statistical analysis like linear 
regression). If you do not want this, add “, stringsAsFactors = FALSE” between the brackets. 
 
We now already have a great deal of stuff in the memory. It is always good practice to start each session 
in R by wiping your memory (well, not yours – the computer memory). Type 

 ls()  
I.e., “list(what to list?)”. This command gives the locally defined variables. We will have the output 
[1] "aap"     "mies"    "noot"    "schapen" 
To wipe these, type 

 rm(list = ls()) 

I.e., “remove (what to remove? Well, all the listed stuff)”. It removes the list containing all pre-defined 
symbols. Check this by again typing 

 ls() 
It should be an empty list now. 
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3. Reading files 
 
Typically you will not enter everything manually, but you will read data from files. Also, you will want to 
work with a text editor, so you can save a file containing all R commands. Also, we want to set the 
working directory. If we want to call installed packages, and to interface R and NetLogo later on, we need 
to have a place from which we start.  

 
Create a new text file in the directory of your choice, say, test.r. Alternatively, you create it using 
file/New script in the R prompt. 
Open this file under file/Open script; of course, it’s empty. 
You can now type all commands as lines in this text file, so 

 ls() 
 rm(list = ls()) 

 
You can execute a line by placing the cursor at the start of that line, then press Ctrl+R. If you want to 
execute parts of the programme at once, select the appropriate lines. And if you wish to execute the 
whole programme, just press Ctrl+A to select all, then Ctrl+R. 
 

Then type 
 setwd(“THE NAME OF THE DIRECTORY YOU WANT TO WORK FROM”) 

I.e., “set working directory”, and then whatever the location is. It could be something like 
 setwd("C:/0Werk/Education/Summer_School") 

If you want to check, type 
 getwd() 

 
Suppose we have an output file (ending in .dat, say foo.dat), containing the entries of this matrix 𝑀 

 

(
4 𝑎
5 𝑏
7 𝑁𝐴

) 

 
To read it in as a data table, type 

 foo.data <- read.table(“foo.dat”, header = FALSE) 
Of course, “foo.data” can be any name you’d like. Note that R has automatically assigned foo.data as a 
data frame. Should the data columns have names, you would have header = TRUE. If you check, you see 

 foo.data 
  V1   V2 
1  4    a 
2  5    b 
3  7 <NA> 
 
You can select columns. E.g., type 

 foo.data[1] 
This gives you the first column of the data file.  

Type 
 foo.data[,1] 

This gives you the transposed first column. 
Type 

 foo.data[1,] 
This gives you the first row. 
Finally, type 

 foo.data[3,2] 
This gives you the element in row 3, column 2 (it should read ‘<NA>’). 
 
If you want to select specific rows or columns, you can use ‘:’. Type 

 foo.data[2:3,] 
This gives 
  V1   V2 
2  5    b 
3  7 <NA> 
 
Play around with this to get the hang of it. 
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4. Simple statistics in R 
 
Now let’s move on to use R for what it was intended for in the first place: statistical analysis. 
 
We read in a file included in the zip belonging to this tutorial, ‘00testfile.dat’. Give it a name, like 

 test.data <- read.table(“00testfile.dat”, header = FALSE) 

 test.data 
   V1  V2 
1   1 1.0 
2   2 1.5 
... 
17 17 9.0 
 
We consider only the entries in the second column. Type 

 X <- test.data$V2 
The ‘$’ indicates the column. Since the columns have no names, they are identified by V followed by a 
number. 
 

We first check the number of entries. This is the length or dimension of the vector. Type 
 length(X) 

This gives ‘17’. This is a good first check on your data. If the number of rows (or columns) isn’t correct, 
then something needs to be fixed! 
 
We then calculate the average (also known as mean or expected value). Type 

 mean(X) 
The answer should be ‘5’. 
 
The variance is a measure for the spread of the values. Type 

 var(X) 

The answer should be ‘6.375’. 
 

5. Plotting in R 
 
The above are all summary statistics. It is good practice to inspect your data using graphical means. 

 
A good first visual data check is to look at the distribution of the data. Data do not usually follow a 
perfect textbook distribution known as probability density function (PDF), plus the number of entries is 
limited and the exact distribution is therefore not known. We therefore approximate a PDF by a 
histogram. The data are assigned to different bins, typically of fixed interval length. 
 
Type 

 h <- hist(X, breaks = 20) 
This gives you a histogram with the arbitrary name ‘h’ consisting of 20 bins. Experiment with the number 
of bins to see what happens. In this case, not a lot. The 17 entries in the data file are perfectly 
distributed according to a uniform distribution. But usually your data will look differently! 

 
We can also make graphical files in R (of course). Type 

 png(filename = “myhistogram.png”) 
 plot(h) 
 dev.off() 

This last command closes the graphical interface, and the png is actually printed. You now have a picture 
to put into your Powerpoint presentation or paper. 
 
Note, that in this case the left bin has two entries instead of one. This has to do with how you set the 
lower and upper boundaries. 
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6. Linear regression in R 
 
We may also be interested in correlating variables.  
 
First open the file ‘01testfile.r’ in the zip in a text editor and manually adjust the line for the working 
directory. Then, use ‘File/Open Script’ and select the file ‘01testfile.r’. The file contains the lines 

 ofatr.data <- read.table("ofatr.dat", header=TRUE) 
 r <- ofatr.data$r 
 ar <- ofatr.data$agents 
 fitr <- lm(ar~r,data=ofatr.data) 
 summary(fitr) 

Select all the text in the file (e.g., by using Ctrl+A when using the default Windows text editor) and 

execute by running Ctrl+R. 
 
What we do here is give names to the first and second columns, then try to obtain the line that 
minimizes the sum of square distances, i.e., the regression line. The command for this is 

 lm(y ~ x, data = XXX) 
Here, variable y is the dependent variable, x is the independent variable, and ‘XXX’ is the data used in 
the regression. The summary is to see if this ‘fit’ is any good. In this case, we get: 
 

Call: 

lm(formula = ar ~ r, data = ofatr.data) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-32.971  -8.146   3.540  13.116  21.535  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   49.925      4.027   12.40   <2e-16 *** 
r            984.176     12.330   79.82   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
Residual standard error: 15.1 on 88 degrees of freedom 
Multiple R-squared:  0.9864,    Adjusted R-squared:  
0.9862  
F-statistic:  6371 on 1 and 88 DF,  p-value: < 2.2e-16 

 
The low p-value < 0.001 (namely, the ‘***’) implies significance following the standard threshold of 5%. 

In other words, the fit seems very reasonable, and y could depend on x. Although we normally cannot 
prove a causal relation this way for ‘black box’ data, it is likely in this case that the causal dependence is 
real because the model was constructed this way. We can thus use these results in this case as a test of 
whether we have implemented our model correctly. 
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Because we commonly expect nonlinear relations in ABMs, we would like to display our data fit in a 

graphical way to get more information. We type 
 png(filename="scatterplotr.png") 
 plot(r, ar, main="Scatterplot of no. of agents vs. r", ylab = 'No. of agents') 
 abline(fitr) 
 dev.off() 

The command ‘abline()’ allows us to plot the fit into the scatterplot. 
 
In your working directory, a png-file should appear that looks like this: 
 

 
In this case, superficially it seems the linear fit is quite accurate, although a clear curvature is visible. 
Should you want to further test the quality of your fit, you can always check the residuals with a QQ plot 
or a Shapiro-Wilks test, for instance.  
 
Look at the data 

 ar 
 
This should give: 

> ar 
 [1] 121.284 128.850 120.498 127.340 121.374 116.124 124.668 118.032 115.372 
[10] ... 
[82] 522.528 520.912 520.774 519.792 522.786 519.058 522.042 519.832 521.786 

 
For each ‘group’ of ten ‘observations’ (fixed value of r) we can determine whether they would be likely to 
come from a normal distribution or not. Select for instance the first ten values (for 𝑟 = 0.10), by taking 

 ar[1:10] 
 

> ar[1:10] 
 [1] 121.284 128.850 120.498 127.340 121.374 116.124 124.668 118.032 115.372 
[10] 124.668 

 
You can do a Shapiro-Wilks test by typing 

 shapiro.test(ar[1:10]) 
 

> shapiro.test(ar[1:10]) 
 
        Shapiro-Wilk normality test 
 
data:  ar[1:10] 
W = 0.95598, p-value = 0.7392 

 
This test assumes as null hypothesis that the distribution (in this case of the values of ‘ar’ given 𝑟 = 0.10) 

is a normal distribution. If the p-value is smaller than the chosen alpha level (typically 0.05), this null 
hypothesis is rejected. In this case, the p-value is clearly larger than alpha, and the null hypothesis 
cannot be rejected. I.e., we can assume it is a normal distribution. We would like to point out here, that 

you may need quite a number of samples before you can be reasonably certain of this. In this case, we 
have used ten samples per parameter value, but some 50 samples might be more appropriate. 
 
You can repeat this test for each of the values of r. However, it is more appropriate to perform this test 
on the residuals after the fit. The residual of an observed value is the difference between the observed 
value (or ABM model output, in this case) and the estimated value of the quantity of interest (like the 
sample mean of the ABM model outputs at the same parameter value, in this case). Do not mix up 
residual with error, which is the deviation between the observed value and the unobservable true value 
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(although we might be able to calculate such a true value for simpler models, but this is not likely in the 

case of ABMs). 
 
You can fetch the residuals by typing 

 fitr.res <- residuals(fitr) 
 
Now, when we perform a Shapiro-Wilks test  

 shapiro.test(fitr.res) 
We get: 

> shapiro.test(fitr.res) 
 

        Shapiro-Wilk normality test 
 
data:  fitr.res 
W = 0.92106, p-value = 4.054e-05 

 
Note, that when we look at the residuals of the separate ‘groups’, like group 1 (𝑟 = 0.10), we get evidence 

for a normal distribution (i.e., large p-values) for each ‘group’. The statistical inspection of the full set of 
residuals however seems to suggest that we may not have a straight line. So even if the residuals for 
each fixed value of r follow a normal distribution, the full set does not. This reveals that the residuals of 
the linear regression model differ between different values of the parameter r. In other words, there 
seems to be some trend in the data that is not described by the fitted straight line. Recall that the plot of 

the regression fit seemed to show some curvature in the dataset. This is consistent with our finding that 
the residuals are not normally distributed, and likely there is also a nonlinear contribution we should 
include in our fit. 
 
We can also plot the residuals or the standardized residuals in a QQ plot. A QQ (quantile-quantile) plot is 
a probability plot meant to compare two probability distributions (this could be a histogram made from 
data and a theoretical distribution). If the two compared distributions are similar, the points in the plot 
will all lie along the line 𝑦 = 𝑥. If the distributions are linearly related, the points will lie along a line, but 

not necessarily on the line 𝑦 = 𝑥. 

 
Type: 

 fitr.sres <- rstandard(fitr) 
And then plot the QQ plot 

 png(filename = "sresiduals.png") 
 qqnorm(fitr.sres) 

 qqline(fitr.sres) 
 dev.off()  

(The command ‘dev.off()’ is meant to close the plot screen again.) 
 
We see something like this: 

 
The results of our analysis do not provide proof, but they do provide insight in whether we maybe should 

not be blindly accepting a linear regression as a good fit. In this case, both the results of the Shapiro-
Wilks test on the residuals and the QQ plot based on the standardized residuals seem to suggest that the 
relationship between r and ar (the no. of agents) is not a linear one. We would proceed, for instance, by 
detrending the data using a nonlinear function. From a scientific point of view, you would want to come 
up with a process or an explanation on which to base this nonlinear relation. 
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7. Interface RNetLogo 
 
It is now time to start with the interface between R and NetLogo. Important: You should have a folder 
‘library’ in the working directory. This library should contain ‘RNetLogo’, as well as any other packages 
you are using. This way you can keep an eye on which packages you use, and you can load them into the 
text file you are working in by simply calling ‘library(NAME_PACKAGE)’. 

 
You can download RNetLogo here: 
https://cran.r-project.org/web/packages/RNetLogo/index.html 
You can also use ‘install.packages()’ in the text editor. 
 
Open up a new file ‘02testfile.r’. The file contains the lines 

 .libPaths("library") 
 install.packages("RNetLogo") 
 library(RNetLogo) 

You can out-comment a line by putting a ‘#’ in front; you will only need to use ‘install.packages()’ once. 
 
We also need to call NetLogo. Type 

 nl.path <- "C:/Program Files/NetLogo 6.0.4/app" 
 nl.jarname <- "netlogo-6.0.4.jar" 
 NLStart(nl.path = nl.path, gui = FALSE, nl.jarname = nl.jarname) 

In the example I assume you have installed NetLogo 6.0.4 under Program Files. You will have to change 
this accordingly if you have installed a different version and/or in a different folder. 
 

8. Playing with RNetLogo: fire model demo 
 
Now, let’s load a model to play with. We are going to use the NetLogo fire model. We place a copy of the 
model from the NetLogo library in the folder ‘Model’ in the folder we work in. Then type 

 NLLoadModel("C:/NAME_FOLDER_YOU_WORK_IN/Model/Fire.nlogo") 
 
RNetLogo can now make an interface to NetLogo, and you can use R to ‘control’ the NetLogo model 
without actually opening it (assuming you have first checked it for bugs). 
 
To try, type 

 NLCommand("set density", 57) 
 NLCommand("setup") 
 NLCommand("go") 
 burned <- NLReport("burned-trees") 
 print(burned) 
 NLQuit() 

You should get a number, which is the output of the NetLogo simulation after one iteration. The last 
command (‘NLQuit’) is to close the NetLogo simulation again, otherwise you will continue with that 
simulation. 
 
It is of course very cumbersome to execute a whole set of simulations in this way. So we are going to set 

up a numerical experiment. Type 
 data <- c() 
 nruns <- 10 
 nticks <- 1000 

 
I.e., we have created a column vector containing empty elements to store our simulation results. We 
have created integers for how many runs we want to do, and how many iterations (‘ticks’ in NetLogo) 
they should cover. It is worthwhile to mention to put the integer ‘nticks’ to a large enough number; the 
fire model terminates only when no more ‘fires are burning’, which can take quite a few ticks (but a 
thousand should be more than enough while ensuring it will not run forever). Alternatively, you may be 
interested in the output at a particular time point. In that case, put it to the number you desire. 
 

Now, we are using a for-loop. Granted, many R fans do not advocate the use of for-loops; instead, they 
suggest vectorization. We will address this issue in part 2 of this tutorial, but for now I leave that 
discussion, because as a practical person I first want things to work; the code cleaning can come later.  
 
The whole reason for setting up this loop is to produce output. Therefore, in the loop we also need 
commands to write output from the model to an output file.  
 

https://cran.r-project.org/web/packages/RNetLogo/index.html
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Type 

 for (i in 1:nruns){ 
  print(i) 
  NLCommand("set density", 57)  # percentage 
  NLCommand("setup") 
    for(k in 1:(nticks+1)){ 
      tick <- NLReport("ticks") 
   NLCommand("go") 
  } 
  burned <- NLReport("burned-trees") 
  print(burned) 
  data[i] <- burned 
 } 

 
Summarizing, we open a for-loop for nruns simulations. For each simulation we print the iteration 
number ‘i’, we set the density to a fixed number (57), we set up the initial conditions of the model using 
the ‘setup’ command, then run the model for nticks iterations in a separate for-loop, in which the tick is 
reported, the NetLogo ‘go’ command is called, and the output ‘number of burned trees’ is reported. The 
‘number of burned trees’ of the final iteration is stored in the element ‘burned’, which is stored in the 
vector ‘data’ we created earlier as element ‘data[i]’, i.e., the output at the end of the simulation is stored 
as the i-th element in the data vector. Be advised, that when ‘nruns’ is larger it may take a while before 
the simulations have terminated. 
 
Note, that in order to store our simulation results in a data file, we first have to close NetLogo. Type 

 NLQuit() 

Then, type  
 write(data, file = "simdatafire.dat", append = FALSE, sep = " ") 

In the folder you work in, you will see a file ‘simdata.dat’ has appeared, containing ten values, such as: 

610 816 795 825 787 
854 875 797 644 801 

 
This is the output of your numerical experiment you can use in further analysis. We will continue creating 

and analyzing model output like this in part 2 of this tutorial. 
 
You can now proceed to part 2 of this tutorial. 
 
# 


